900 resultados para bivariate GARCH-M
Resumo:
In this paper, we investigate the pricing of crack spread options. Particular emphasis is placed on the question of whether univariate modeling of the crack spread or explicit modeling of the two underlyings is preferable. Therefore, we contrast a bivariate GARCH volatility model for cointegrated underlyings with the alternative of modeling the crack spread directly. Conducting an empirical analysis of crude oil/heating oil and crude oil/gasoline crack spread options traded on the New York Mercantile Exchange, the more simplistic univariate approach is found to be superior with respect to option pricing performance.
Resumo:
The effects of exchange rate risk have interested researchers, since the collapse of fixed exchange rates. Little consensus exists, however, regarding its effect on exports. Previous studies implicitly assume symmetry. This paper tests the hypothesis of asymmetric effects of exchange rate risk with a dynamic conditional correlation bivariate GARCH(1,1)-M model. The asymmetry means that exchange rate risk (volatility) affects exports differently during appreciations and depreciations of the exchange rate. The data include bilateral exports from eight Asian countries to the US. The empirical results show that real exchange rate risk significantly affects exports for all countries, negative or positive, in periods of depreciation or appreciation. For five of the eight countries, the effects of exchange risk are asymmetric. Thus, policy makers can consider the stability of the exchange rate in addition to its depreciation as a method of stimulating export growth.
Resumo:
Exchange rate movements affect exports in two ways -- its depreciation and its variability (risk). A depreciation raises exports, but the associated exchange rate risk could offset that positive effect. The present paper investigates the net effect for eight Asian countries using a dynamic conditional correlation bivariate GARCH-M model that simultaneously estimates time varying correlation and exchange rate risk. Depreciation encourages exports, as expected, for most countries, but its contribution to export growth is weak. Exchange rate risk contributes to export growth in Malaysia and the Philippines, leading to positive net effects. Exchange rate risk generates a negative effect for six of the countries, resulting in a negative net effect in Indonesia, Japan, Singapore, Taiwan and a zero net effect in Korea and Thailand. Since the negative effect of exchange rate risk may offset, or even dominate, positive contributions from depreciation, policy makers need to reduce exchange rate fluctuation along with and possibly before efforts to depreciate the currency.
Resumo:
The current international integration of financial markets provides a channel for currency depreciation to affect stock prices. Moreover, the recent financial crisis in Asia with its accompanying exchange rate volatility affords a case study to examine that channel. This paper applies a bivariate GARCH-M model of the reduced form of stock market returns to investigate empirically the effects of daily currency depreciation on stock market returns for five newly emerging East Asian stock markets during the Asian financial crisis. The evidence shows that the conditional variances of stock market returns and depreciation rates exhibit time-varying characteristics for all countries. Domestic currency depreciation and its uncertainty adversely affects stock market returns across countries. The significant effects of foreign exchange market events on stock market returns suggest that international fund managers who invest in the newly emerging East Asian stock markets must evaluate the value and stability of the domestic currency as a part of their stock market investment decisions.
Resumo:
This paper revisits the weak relationship between exchange rate depreciation and exports for Singapore, using a bivariate GARCH-M model that simultaneously estimates time-varying risk. The evidence shows that depreciation does not significantly improve exports, but that exchange rate risk significantly impedes exports. In sum, Singaporean policy makers can better promote export growth by stabilizing the exchange rate rather than generating its depreciation.
Resumo:
We examine how the most prevalent stochastic properties of key financial time series have been affected during the recent financial crises. In particular we focus on changes associated with the remarkable economic events of the last two decades in the volatility dynamics, including the underlying volatility persistence and volatility spillover structure. Using daily data from several key stock market indices, the results of our bivariate GARCH models show the existence of time varying correlations as well as time varying shock and volatility spillovers between the returns of FTSE and DAX, and those of NIKKEI and Hang Seng, which became more prominent during the recent financial crisis. Our theoretical considerations on the time varying model which provides the platform upon which we integrate our multifaceted empirical approaches are also of independent interest. In particular, we provide the general solution for time varying asymmetric GARCH specifications, which is a long standing research topic. This enables us to characterize these models by deriving, first, their multistep ahead predictors, second, the first two time varying unconditional moments, and third, their covariance structure.
Resumo:
In this paper, we propose a multivariate GARCH model with a time-varying conditional correlation structure. The new double smooth transition conditional correlation (DSTCC) GARCH model extends the smooth transition conditional correlation (STCC) GARCH model of Silvennoinen and Teräsvirta (2005) by including another variable according to which the correlations change smoothly between states of constant correlations. A Lagrange multiplier test is derived to test the constancy of correlations against the DSTCC-GARCH model, and another one to test for another transition in the STCC-GARCH framework. In addition, other specification tests, with the aim of aiding the model building procedure, are considered. Analytical expressions for the test statistics and the required derivatives are provided. Applying the model to the stock and bond futures data, we discover that the correlation pattern between them has dramatically changed around the turn of the century. The model is also applied to a selection of world stock indices, and we find evidence for an increasing degree of integration in the capital markets.
Resumo:
Optimal design for generalized linear models has primarily focused on univariate data. Often experiments are performed that have multiple dependent responses described by regression type models, and it is of interest and of value to design the experiment for all these responses. This requires a multivariate distribution underlying a pre-chosen model for the data. Here, we consider the design of experiments for bivariate binary data which are dependent. We explore Copula functions which provide a rich and flexible class of structures to derive joint distributions for bivariate binary data. We present methods for deriving optimal experimental designs for dependent bivariate binary data using Copulas, and demonstrate that, by including the dependence between responses in the design process, more efficient parameter estimates are obtained than by the usual practice of simply designing for a single variable only. Further, we investigate the robustness of designs with respect to initial parameter estimates and Copula function, and also show the performance of compound criteria within this bivariate binary setting.
Resumo:
Large multisite efforts (e.g., the ENIGMA Consortium), have shown that neuroimaging traits including tract integrity (from DTI fractional anisotropy, FA) and subcortical volumes (from T1-weighted scans) are highly heritable and promising phenotypes for discovering genetic variants associated with brain structure. However, genetic correlations (rg) among measures from these different modalities for mapping the human genome to the brain remain unknown. Discovering these correlations can help map genetic and neuroanatomical pathways implicated in development and inherited risk for disease. We use structural equation models and a twin design to find rg between pairs of phenotypes extracted from DTI and MRI scans. When controlling for intracranial volume, the caudate as well as related measures from the limbic system - hippocampal volume - showed high rg with the cingulum FA. Using an unrelated sample and a Seemingly Unrelated Regression model for bivariate analysis of this connection, we show that a multivariate GWAS approach may be more promising for genetic discovery than a univariate approach applied to each trait separately.
Resumo:
In this dissertation, I present an overall methodological framework for studying linguistic alternations, focusing specifically on lexical variation in denoting a single meaning, that is, synonymy. As the practical example, I employ the synonymous set of the four most common Finnish verbs denoting THINK, namely ajatella, miettiä, pohtia and harkita ‘think, reflect, ponder, consider’. As a continuation to previous work, I describe in considerable detail the extension of statistical methods from dichotomous linguistic settings (e.g., Gries 2003; Bresnan et al. 2007) to polytomous ones, that is, concerning more than two possible alternative outcomes. The applied statistical methods are arranged into a succession of stages with increasing complexity, proceeding from univariate via bivariate to multivariate techniques in the end. As the central multivariate method, I argue for the use of polytomous logistic regression and demonstrate its practical implementation to the studied phenomenon, thus extending the work by Bresnan et al. (2007), who applied simple (binary) logistic regression to a dichotomous structural alternation in English. The results of the various statistical analyses confirm that a wide range of contextual features across different categories are indeed associated with the use and selection of the selected think lexemes; however, a substantial part of these features are not exemplified in current Finnish lexicographical descriptions. The multivariate analysis results indicate that the semantic classifications of syntactic argument types are on the average the most distinctive feature category, followed by overall semantic characterizations of the verb chains, and then syntactic argument types alone, with morphological features pertaining to the verb chain and extra-linguistic features relegated to the last position. In terms of overall performance of the multivariate analysis and modeling, the prediction accuracy seems to reach a ceiling at a Recall rate of roughly two-thirds of the sentences in the research corpus. The analysis of these results suggests a limit to what can be explained and determined within the immediate sentential context and applying the conventional descriptive and analytical apparatus based on currently available linguistic theories and models. The results also support Bresnan’s (2007) and others’ (e.g., Bod et al. 2003) probabilistic view of the relationship between linguistic usage and the underlying linguistic system, in which only a minority of linguistic choices are categorical, given the known context – represented as a feature cluster – that can be analytically grasped and identified. Instead, most contexts exhibit degrees of variation as to their outcomes, resulting in proportionate choices over longer stretches of usage in texts or speech.