982 resultados para birefringence dispersion
Resumo:
A white light interferometer is developed to measure the distributed polarization coupling in high-birefringence polarization-maintaining fibers (PMFs). Usually the birefringence dispersion between two orthogonal eigenmodes of PMFs is neglected in such systems. Theoretical analysis and experimental results show that the birefringence dispersion becomes a nonnegligible factor in a long-fiber test. Significant broadening of interferograms and loss of longitudinal coherence are observed. The spatial resolution and measurement sensitivity of the system decrease correspondingly. Optimum spectrum width selection is presented for better spatial resolution and measurement range. c 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A new method to measure the birefringence dispersion in high-birefringence polarization-maintaining fibers is presented using white-light interferometry. By analyzing broadening of low-coherence interferograms obtained in a scanning Michelson interferometer, the birefringence dispersion and its variation along different fiber sections are acquired with high sensitivity and accuracy. Birefringence dispersions of two PANDA fibers at their operation wavelength are measured to be 0.011 ps/(km nm) and 0.018 ps/(km nm), respectively. Distributed measurement capability of the method is also verified experimentally. (c) 2006 Optical Society of America.
Resumo:
A new method for measuring the birefringence dispersion in polarization-maintaining fibers (PMFs) with high sensitivity and accuracy is presented. The method employs white-light interferences between two orthogonally polarized modes of PMFs. The group birefringence of the fiber is calibrated first. Then the birefringence dispersion and its variation along different fiber sections are acquired by analyzing the broadening of interferograms at different fiber lengths. The main sources of error are investigated. Bireffingence dispersions of two PANDA fibers at their operation wavelength are measured to be 0.011 ps/(km nm) and 0.018 ps/(km nm). A measurement repeatability of 0.001 ps/(km nm) is achieved. (C) 2007 Optical Society of America.
Resumo:
A white light interferometer is developed to measure the distributed polarization coupling in high-birefringence polarization-maintaining fibers (PMFs). Usually the birefringence dispersion between two orthogonal eigenmodes of PMFs is neglected in such systems. Theoretical analysis and experimental results show that the birefringence dispersion becomes a nonnegligible factor in a long-fiber test. Significant broadening of interferograms and loss of longitudinal coherence are observed. The spatial resolution and measurement sensitivity of the system decrease correspondingly. Optimum spectrum width selection is presented for better spatial resolution and measurement range. c 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
根据石英晶体双折射率的色散特性,对石英波片的偏光干涉谱进行了理论分析和数值模拟,提出了一种石英波片延迟量和厚度的偏光干涉标定法。即由偏光干涉谱,可以得出石英波片在200~2000 nm宽光谱范围内的延迟量;通过对长波段的偏光干涉谱极值波长的精确判断,可以准确地计算出该石英波片的厚度。利用Lambda 900 紫外可见近红外分光光度计对一片石英波片的偏光干涉谱进行了测量。在波长精度为0.1 nm的情况下,测量的厚度精度为0.1 μm。误差分析结果表明,通过提高光谱的最小分辨力及选择较长的光谱波段进行测量计算
Resumo:
Pós-graduação em Cirurgia Veterinária - FCAV
Resumo:
The development of sensing devices is one of the instrumentation fields that has grown rapidly in the last decade. Corresponding to the swift advance in the development of microelectronic sensors, optical fibre sensors are widely investigated because of their advantageous properties over the electronics sensors such as their wavelength multiplexing capability and high sensitivity to temperature, pressure, strain, vibration and acoustic emission. Moreover, optical fibre sensors are more attractive than the electronics sensors as they can perform distributed sensing, in terms of covering a reasonably large area using a single piece of fibre. Apart from being a responsive element in the sensing field, optical fibre possesses good assets in generating, distributing, processing and transmitting signals in the future broadband information network. These assets include wide bandwidth, high capacity and low loss that grant mobility and flexibility for wireless access systems. Among these core technologies, the fibre optic signal processing and transmission of optical and radio frequency signals have been the subjects of study in this thesis. Based on the intrinsic properties of single-mode optical fibre, this thesis aims to exploit the fibre characteristics such as thermal sensitivity, birefringence, dispersion and nonlinearity, in the applications of temperature sensing and radio-over-fibre systems. By exploiting the fibre thermal sensitivity, a fully distributed temperature sensing system consisting of an apodised chirped fibre Bragg grating has been implemented. The proposed system has proven to be efficient in characterising grating and providing the information of temperature variation, location and width of the heat source applied in the area under test.To exploit the fibre birefringence, a fibre delay line filter using a single high-birefringence optical fibre structure has been presented. The proposed filter can be reconfigured and programmed by adjusting the input azimuth of launched light, as well as the strength and direction of the applied coupling, to meet the requirements of signal processing for different purposes in microwave photonic and optical filtering applications. To exploit the fibre dispersion and nonlinearity, experimental investigations have been carried out to study their joint effect in high power double-sideband and single-sideband modulated links with the presence of fibre loss. The experimental results have been theoretically verified based on the in-house implementation of the split-step Fourier method applied to the generalised nonlinear Schrödinger equation. Further simulation study on the inter-modulation distortion in two-tone signal transmission has also been presented so as to show the effect of nonlinearity of one channel on the other. In addition to the experimental work, numerical simulations have also been carried out in all the proposed systems, to ensure that all the aspects concerned are comprehensively investigated.
Resumo:
We have proposed a novel type of photonic crystal fiber (PCF) with low dispersion and high nonlinearity for four-wave mixing. This type of fiber is composed of a solid silica core and a cladding with a squeezed hexagonal lattice elliptical airhole along the fiber length. Its dispersion and nonlinearity coefficient are investigated simultaneously by using the full vectorial finite element method. Numerical results show that the proposed highly nonlinear low-dispersion fiber has a total dispersion as low as +/- 2.5 ps nm(-1) km(-1) over an ultrabroad wavelength range from 1.43 to 1.8 mu m, and the corresponding nonlinearity coefficient and birefringence are about 150 W-1 km(-1) and 2.5 x 10(-3) at 1.55 mu m, respectively. The proposed PCF with low ultraflattened dispersion, high nonlinearity, and high birefringence can have important application in four-wave mixing. (C) 2010 Optical Society of America
Resumo:
The hexagonal resonator characteristics of an individual ZnO-nanonail’s head were investigated via spatially resolved cathodoluminescence (CL) at room temperature. The positions of most of distinct CL peaks in visible range were well matched to those of whispering gallery modes (WGMs) of a hexagonal dielectric cavity when we took birefringence and dispersion of refractive indices into account. The broad and weak peaks for TE polarization in long wavelength range were consistent with refractive-index values below the threshold for total internal inflection. CL peaks that were not matched to WGMs were identified as either triangular quasi-WGM or Fabry–Pérot resonance modes.
Resumo:
The variation of the linear electro-optic effect in (-)-2-(alpha-methylbenzylamino)-5-nitropyridine with the wavelength of the incident light at room temperature has been measured. The reduced half-wave voltages have been found to have the values 2.1, 2.8, and 6.0 kV at 488, 514.5, and 632.8 nm respectively and the corresponding values of the linear electro-optic coefficient have been evaluated.;The interpretation of the results in terms of the structures of the molecule and the crystal is discussed. The thermal variation of the birefringence has also been investigated and the coefficient for the temperature variation of the refractive index difference is found to have the value (d Delta n/dT)=9.3X10(-5) K-1.
Resumo:
Ferrofluids belonging to the series NixFe1 xFe2O4 were synthesised by two different procedures—one by standard co-precipitation techniques, the other by co-precipitation for synthesis of particles and dispersion aided by high-energy ball milling with a view to understand the effect of strain and size anisotropy on the magneto-optical properties of ferrofluids. The birefringence measurements were carried out using a standard ellipsometer. The birefringence signal obtained for chemically synthesised samples was satisfactorily fitted to the standard second Langevin function. The ball-milled ferrofluids showed a deviation and their birefringence was enhanced by an order. This large enhancement in the birefringence value cannot be attributed to the increase in grain size of the samples, considering that the grain sizes of sample synthesised by both modes are comparable; instead, it can be attributed to the lattice strain-induced shape anisotropy(oblation) arising from the high-energy ball-milling process. Thus magnetic-optical (MO) signals can be tuned by ball-milling process, which can find potential applications.
Resumo:
Ferrofluids belonging to the series NixFe1 xFe2O4 were synthesised by two different procedures—one by standard co-precipitation techniques, the other by co-precipitation for synthesis of particles and dispersion aided by high-energy ball milling with a view to understand the effect of strain and size anisotropy on the magneto-optical properties of ferrofluids. The birefringence measurements were carried out using a standard ellipsometer. The birefringence signal obtained for chemically synthesised samples was satisfactorily fitted to the standard second Langevin function. The ball-milled ferrofluids showed a deviation and their birefringence was enhanced by an order. This large enhancement in the birefringence value cannot be attributed to the increase in grain size of the samples, considering that the grain sizes of sample synthesised by both modes are comparable; instead, it can be attributed to the lattice strain-induced shape anisotropy(oblation) arising from the high-energy ball-milling process. Thus magnetic-optical (MO) signals can be tuned by ball-milling process, which can find potential applications
Resumo:
We report on the generation of 42 fs pulses at 1 µm in a completely fiber-integrated format, which are, to the best of our knowledge, the shortest from all-fiber-integrated Yb-doped fiber lasers to date. The ring fiber cavity incorporates anomalous-dispersion, solid-core photonic crystal fiber with low birefringence, which acts as a broadband, in-fiber Lyot filter to facilitate mode locking. The oscillator operates in the stretched-pulse regime under slight normal net cavity dispersion. The cavity generates 4.7 ps long pulses with a spectral bandwidth of 58.2 nm, which are dechirped to 42 fs via a grating pair compressor outside of the cavity. Relative intensity noise (RIN) of the laser is characterized, with the integrated RIN found to be 0.026% in the 3 Hz-250 kHz frequency range.
Resumo:
For the first time for the model of real-world forward-pumped fibre Raman amplifier with the randomly varying birefringence, the stochastic calculations have been done numerically based on the Kloeden-Platen-Schurz algorithm. The results obtained for the averaged gain and gain fluctuations as a function of polarization mode dispersion (PMD) parameter agree quantitatively with the results of previously developed analytical model. Simultaneously, the direct numerical simulations demonstrate an increased stochastisation (maximum in averaged gain variation) within the region of the polarization mode dispersion parameter of 0.1÷0.3 ps/km1/2. The results give an insight into margins of applicability of a generic multi-scale technique widely used to derive coupled Manakov equations and allow generalizing analytic model with accounting for pump depletion, group-delay dispersion and Kerr-nonlinearity that is of great interest for development of the high-transmission-rates optical networks.