56 resultados para biplot


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biplots are graphical displays of data matrices based on the decomposition of a matrix as the product of two matrices. Elements of these two matrices are used as coordinates for the rows and columns of the data matrix, with an interpretation of the joint presentation that relies on the properties of the scalar product. Because the decomposition is not unique, there are several alternative ways to scale the row and column points of the biplot, which can cause confusion amongst users, especially when software packages are not united in their approach to this issue. We propose a new scaling of the solution, called the standard biplot, which applies equally well to a wide variety of analyses such as correspondence analysis, principal component analysis, log-ratio analysis and the graphical results of a discriminant analysis/MANOVA, in fact to any method based on the singular-value decomposition. The standard biplot also handles data matrices with widely different levels of inherent variance. Two concepts taken from correspondence analysis are important to this idea: the weighting of row and column points, and the contributions made by the points to the solution. In the standard biplot one set of points, usually the rows of the data matrix, optimally represent the positions of the cases or sample units, which are weighted and usually standardized in some way unless the matrix contains values that are comparable in their raw form. The other set of points, usually the columns, is represented in accordance with their contributions to the low-dimensional solution. As for any biplot, the projections of the row points onto vectors defined by the column points approximate the centred and (optionally) standardized data. The method is illustrated with several examples to demonstrate how the standard biplot copes in different situations to give a joint map which needs only one common scale on the principal axes, thus avoiding the problem of enlarging or contracting the scale of one set of points to make the biplot readable. The proposal also solves the problem in correspondence analysis of low-frequency categories that are located on the periphery of the map, giving the false impression that they are important.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract:The objective of this work was to evaluate the suitability of the multivariate method of principal component analysis (PCA) using the GGE biplot software for grouping sunflower genotypes for their reaction to Alternaria leaf spot disease (Alternariaster helianthi), and for their yield and oil content. Sixty-nine genotypes were evaluated for disease severity in the field, at the R3 growth stage, in seven growing seasons, in Londrina, in the state of Paraná, Brazil, using a diagrammatic scale developed for this disease. Yield and oil content were also evaluated. Data were standardized using the software Statistica, and GGE biplot was used for PCA and graphical display of data. The first two principal components explained 77.9% of the total variation. According to the polygonal biplot using the first two principal components and three response variables, the genotypes were divided into seven sectors. Genotypes located on sectors 1 and 2 showed high yield and high oil content, respectively, and those located on sector 7 showed tolerance to the disease and high yield, despite the high disease severity. The principal component analysis using GGE biplot is an efficient method for grouping sunflower genotypes based on the studied variables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low temperature is one of the main environmental constraints for rice ( Oryza sativa L.) grain production yield. It is known that multi-environment studies play a critical role in the sustainability of rice production across diverse environments. However, there are few studies based on multi-environment studies of rice in temperate climates. The aim was to study the performance of rice plants in cold environments. Four experimental lines and six cultivars were evaluated at three locations during three seasons. The grain yield data were analyzed with ANOVA, mixed models based on the best linear unbiased predictors (BLUPs), and genotype plus Genotype × Environment interaction (GGE) biplot. High genotype contribution (> 25%) was observed in grain yield and the interaction between genotype and locations was not very important. Results also showed that ‘Quila 241319’ was the best experimental line with the highest grain yield (11.3 t ha-1) and grain yield stability across the environments; commercial cultivars were classified as medium grain yield genotypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to identify sorghum hybrids that have both high yield and phenotypic stability in Brazilian environments. Seven trials were conducted between February and March 2011. The experimental design was a randomized complete block with 25 treatments and three replicates...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mango (Mangifera indica L.) trees stand out among the main fruit trees cultivated in Brazil. The mango rosa fruit is a very popular local variety (landrace), especially because of their superior technological characteristics such as high contents of Vitamin C and soluble solids (SS), as well as attractive taste and color. The objective of this study was to select a breeding population of mango rosa (polyclonal variety; ≥5 individuals) that can simultaneously meet the fresh and processed fruit Vmarkets, using the multivariate method of principal components and the biplot graphic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most strawberry genotypes grown commercially in Brazil originate from breeding programs in the United States, and are therefore not adapted to the various soil and climatic conditions found in Brazil. Thus, quantifying the magnitude of genotype x environment (GE) interactions serves as a primary means for increasing average Brazilian strawberry yields, and helps provide specific recommendations for farmers on which genotypes meet high yield and phenotypic stability thresholds. The aim of this study was to use AMMI (additive main effects and multiplicative interaction) and GGE biplot (genotype main effects + genotype x environment interaction) analyses to identify high-yield, stable strawberry genotypes grown at three locations in Espírito Santo for two agricultural years. We evaluated seven strawberry genotypes (Dover, Camino Real, Ventana, Camarosa, Seascape, Diamante, and Aromas) at three locations (Domingos Martins, Iúna, and Muniz Freire) in agricultural years 2006 and 2007, totaling six study environments. Joint analysis of variance was calculated using yield data (t/ha), and AMMI and GGE biplot analysis was conducted following the detection of a significant genotypes x agricultural years x locations (G x A x L) interaction. During the two agricultural years, evaluated locations were allocated to different regions on biplot graphics using both methods, indicating distinctions among them. Based on the results obtained from the two methods used in this study to investigate the G x A x L interaction, we recommend growing the Camarosa genotype for production at the three locations assessed due to the high frequency of favorable alleles, which were expressed in all localities evaluated regardless of the agricultural year.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sum: Plant biologists in fields of ecology, evolution, genetics and breeding frequently use multivariate methods. This paper illustrates Principal Component Analysis (PCA) and Gabriel's biplot as applied to microarray expression data from plant pathology experiments. Availability: An example program in the publicly distributed statistical language R is available from the web site (www.tpp.uq.edu.au) and by e-mail from the contact. Contact: scott.chapman@csiro.au.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O objetivo deste estudo foi selecionar linhagens de trigo para qualidade de panificação e para rendimento de grãos (RG), em ensaios multiambientes, e identificar ambientes de teste ideais para a seleção. Foram avaliados 39 genótipos de trigo, sendo 18 linhagens e nove cultivares testemunhas, em 2010, e 11 linhagens e quatro cultivares testemunhas, em 2011, no Estado do Paraná. Algumas linhagens e locais não foram repetidos entre os dois anos. O delineamento experimental utilizado foi o de blocos casualizados, com três repetições. A metodologia, em gráfico biplot GGE (Genotype and Genotype-by-Environment), foi utilizada para a avaliação de genótipos e ambientes de teste. Na safra 2010, os locais de Nova Fátima, Pitangueiras e Ventania foram discriminantes (maximizaram a expressão do RG e diferenciação entre genótipos) e representativos do conjunto de ambientes avaliados. Em 2011, Rolândia e Astorga destacaram-se como ambientes ideais para seleção simultânea para RG e qualidade de panificação. As linhagens BIO-08528 e BIO-08228 foram classificadas como genótipos ideais para o RG e a concentração proteica dos grãos (CPG), respectivamente. Na safra 2011, as linhagens BIO-10161 e BIO-10141 foram superiores para RG e para qualidade de panificação, respectivamente. O teste de sedimentação SDS e a CPG correlacionaram-se entre si (r = 0,61**) e foram moderadamente associados com a força de glúten (r = 0,49** e 0,74**), indicando que podem ser utilizados na seleção indireta para qualidade de panificação.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Corporate Social Responsibility practices have been on the rise in recent years in firms all over the world. Brazil, as one of the most important countries emerging on the international scene, is no exception to this, with more and more firms taking up these practices. The present study focuses on analyzing the corporate social responsibility practices that Brazilian companies engage into. The sample used is comprised of 500 firms grouped by geographical area; the theoretical framework is based on stakeholder and institutional theories; and the technique used for the analysis is the biplot, more specifically the HJ Biplot and cluster analysis. From the results obtained it is possible to infer that the CSR variables corresponding to environmental practices are more closely linked to companies located in the northern areas of Brazil. Social and community practices are related to companies primarily in the southern and northeastern regions of the country.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In an earlier investigation (Burger et al., 2000) five sediment cores near the RodriguesTriple Junction in the Indian Ocean were studied applying classical statistical methods(fuzzy c-means clustering, linear mixing model, principal component analysis) for theextraction of endmembers and evaluating the spatial and temporal variation ofgeochemical signals. Three main factors of sedimentation were expected by the marinegeologists: a volcano-genetic, a hydro-hydrothermal and an ultra-basic factor. Thedisplay of fuzzy membership values and/or factor scores versus depth providedconsistent results for two factors only; the ultra-basic component could not beidentified. The reason for this may be that only traditional statistical methods wereapplied, i.e. the untransformed components were used and the cosine-theta coefficient assimilarity measure.During the last decade considerable progress in compositional data analysis was madeand many case studies were published using new tools for exploratory analysis of thesedata. Therefore it makes sense to check if the application of suitable data transformations,reduction of the D-part simplex to two or three factors and visualinterpretation of the factor scores would lead to a revision of earlier results and toanswers to open questions . In this paper we follow the lines of a paper of R. Tolosana-Delgado et al. (2005) starting with a problem-oriented interpretation of the biplotscattergram, extracting compositional factors, ilr-transformation of the components andvisualization of the factor scores in a spatial context: The compositional factors will beplotted versus depth (time) of the core samples in order to facilitate the identification ofthe expected sources of the sedimentary process.Kew words: compositional data analysis, biplot, deep sea sediments

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biplot has proved to be a powerful descriptive and analytical tool in many areasof applications of statistics. For compositional data the necessary theoreticaladaptation has been provided, with illustrative applications, by Aitchison (1990) andAitchison and Greenacre (2002). These papers were restricted to the interpretation ofsimple compositional data sets. In many situations the problem has to be described insome form of conditional modelling. For example, in a clinical trial where interest isin how patients’ steroid metabolite compositions may change as a result of differenttreatment regimes, interest is in relating the compositions after treatment to thecompositions before treatment and the nature of the treatments applied. To study thisthrough a biplot technique requires the development of some form of conditionalcompositional biplot. This is the purpose of this paper. We choose as a motivatingapplication an analysis of the 1992 US President ial Election, where interest may be inhow the three-part composition, the percentage division among the three candidates -Bush, Clinton and Perot - of the presidential vote in each state, depends on the ethniccomposition and on the urban-rural composition of the state. The methodology ofconditional compositional biplots is first developed and a detailed interpretation of the1992 US Presidential Election provided. We use a second application involving theconditional variability of tektite mineral compositions with respect to major oxidecompositions to demonstrate some hazards of simplistic interpretation of biplots.Finally we conjecture on further possible applications of conditional compositionalbiplots

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sediment composition is mainly controlled by the nature of the source rock(s), and chemical (weathering) and physical processes (mechanical crushing, abrasion, hydrodynamic sorting) during alteration and transport. Although the factors controlling these processes are conceptually well understood, detailed quantification of compositional changes induced by a single process are rare, as are examples where the effects of several processes can be distinguished. The present study was designed to characterize the role of mechanical crushing and sorting in the absence of chemical weathering. Twenty sediment samples were taken from Alpine glaciers that erode almost pure granitoid lithologies. For each sample, 11 grain-size fractions from granules to clay (ø grades &-1 to &9) were separated, and each fraction was analysed for its chemical composition.The presence of clear steps in the box-plots of all parts (in adequate ilr and clr scales) against ø is assumed to be explained by typical crystal size ranges for the relevant mineral phases. These scatter plots and the biplot suggest a splitting of the full grain size range into three groups: coarser than ø=4 (comparatively rich in SiO2, Na2O, K2O, Al2O3, and dominated by “felsic” minerals like quartz and feldspar), finer than ø=8 (comparatively rich in TiO2, MnO, MgO, Fe2O3, mostly related to “mafic” sheet silicates like biotite and chlorite), and intermediate grains sizes (4≤ø &8; comparatively rich in P2O5 and CaO, related to apatite, some feldspar).To further test the absence of chemical weathering, the observed compositions were regressed against three explanatory variables: a trend on grain size in ø scale, a step function for ø≥4, and another for ø≥8. The original hypothesis was that the trend could be identified with weathering effects, whereas each step function would highlight those minerals with biggest characteristic size at its lower end. Results suggest that this assumption is reasonable for the step function, but that besides weathering some other factors (different mechanical behavior of minerals) have also an important contribution to the trend.Key words: sediment, geochemistry, grain size, regression, step function

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chemical composition of sediments and rocks, as well as their distribution at theMartian surface, represent a long term archive of processes, which have formed theplanetary surface. A survey of chemical compositions by means of Compositional DataAnalysis represents a valuable tool to extract direct evidence for weathering processesand allows to quantify weathering and sedimentation rates. clr-biplot techniques areapplied for visualization of chemical relationships across the surface (“chemical maps”).The variability among individual suites of data is further analyzed by means of clr-PCA,in order to extract chemical alteration vectors between fresh rocks and their crusts andfor an assessment of different source reservoirs accessible to soil formation. Bothtechniques are applied to elucidate the influence of remote weathering by combinedanalysis of several soil forming branches. Vector analysis in the Simplex provides theopportunity to study atmosphere surface interactions, including the role andcomposition of volcanic gases

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We compare two methods for visualising contingency tables and developa method called the ratio map which combines the good properties of both.The first is a biplot based on the logratio approach to compositional dataanalysis. This approach is founded on the principle of subcompositionalcoherence, which assures that results are invariant to considering subsetsof the composition. The second approach, correspondence analysis, isbased on the chi-square approach to contingency table analysis. Acornerstone of correspondence analysis is the principle of distributionalequivalence, which assures invariance in the results when rows or columnswith identical conditional proportions are merged. Both methods may bedescribed as singular value decompositions of appropriately transformedmatrices. Correspondence analysis includes a weighting of the rows andcolumns proportional to the margins of the table. If this idea of row andcolumn weights is introduced into the logratio biplot, we obtain a methodwhich obeys both principles of subcompositional coherence and distributionalequivalence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Correspondence analysis, when used to visualize relationships in a table of counts(for example, abundance data in ecology), has been frequently criticized as being too sensitiveto objects (for example, species) that occur with very low frequency or in very few samples. Inthis statistical report we show that this criticism is generally unfounded. We demonstrate this inseveral data sets by calculating the actual contributions of rare objects to the results ofcorrespondence analysis and canonical correspondence analysis, both to the determination ofthe principal axes and to the chi-square distance. It is a fact that rare objects are oftenpositioned as outliers in correspondence analysis maps, which gives the impression that theyare highly influential, but their low weight offsets their distant positions and reduces their effecton the results. An alternative scaling of the correspondence analysis solution, the contributionbiplot, is proposed as a way of mapping the results in order to avoid the problem of outlying andlow contributing rare objects.