31 resultados para bioterminen kuivaus
Resumo:
Työssä tarkastellaan kompostointiin perustuvaa biotermistä kuivausprosessia, prosessiin vaikuttavia tekijöitä sekä sen soveltuvuutta metsäteollisuuden mekaanisesti kuivatun jätevesilietteen lisäkuivaukseen polttoa varten. Tutkimukseen kuuluvien paperitehtaiden lietteillä suoritettavien biotermisten kuivauskokeiden avulla tutkitaan tehtaiden lietteiden sopivuutta biotermiseen kuivaukseen. Lisäksi tehtaille suunnitellaan kuivauskokeiden ja paperitehtailla tehtävien selvitysten perusteella bioterminen kuivauslaitos. Suomen metsäteollisuus tuottaa nykyisin noin 400 000 – 500 000 kuiva-ainetonnia jätevedenpuhdistamolietteitä vuosittain. Tutkimukseen kuuluvan kahden tehdasintegraatin biologisilla puhdistamoilla syntyvien jätevesilietteiden määrät ovat keskimäärin 33 000 ja 15 000 kuiva-ainetonnia vuodessa. Ongelmana metsäteollisuudessa on jätevesilietteen alhainen kuiva-ainepitoisuus lietteen mekaanisen kuivauksen jälkeen. Tämä vaikeuttaa lietteen polttamista voimalaitoskattilassa ja lietteen poltosta talteen saatavan energian määrä jää vähäiseksi. Mekaanisesti kuivatun sekalietteen käsittely biotermisesti kuivaamalla mahdollistaa lietteen kuiva-ainepitoisuuden nostamisen yli 55 %:in kuiva-ainepitoisuuteen. Tämä helpottaa lietteen polton ongelmia ja kasvattaa lietteen poltosta talteen saatavan energian määrää. Bioterminen kuivaus soveltuu hyvin tutkimukseen kuuluvien tehtaiden sekalietteen kuivaukseen. Suositeltava sekalietteen lähtökuiva-ainepitoisuuden arvo on välillä 30 – 35 % ja tukiaineeksi lisättävän kuoren määrä noin 0,5 m3 yhtä lietekuutiota kohden. Kuivausprosessin kesto on tällöin 10 – 14 vuorokautta, kun haluttu lietepolttoaineen kuiva-ainepitoisuus on vähintään 55 %. Tehtaille suunnitelluissa laitoksissa käsiteltävä lietemäärä on noin 40 000 märkätonnia vuodessa. Tutkimukseen kuuluvalle paperitehtaalle yhdistetyn lietteenkuivausprosessin kustannukset ovat edullisimmat kun liete kuivataan ennen biotermistä kuivausta mekaanisesti 35 %:in kuiva-ainepitoisuuteen. Tällöin lietteenkäsittelyn hinnaksi tulee noin 150 mk/t.
Resumo:
Työ on tehty osana ympäristöklusterin tutkimusohjelmaa "Materiaalivirrat ja energiankäyttö metsäteollisuusintegraatissa ja niihin liittyvät toimintastrategiat ympäristövaikutuslähtöisesti". Juha Räsänen on tehnyt metsäteollisuuden sivuainevirroista projektissa perusselvityksen, joka on tämän työn pohjana. Työn tavoitteena on ollut selvittää neljän itäsuomalaisen metsäteollisuusintegraatin tapauksissa vaihtoehtoisten lietteenkäsittelymenetelmien tekninen ja taloudellinen soveltuvuus nykyiseen käsittelyyn verrattuna. Tutkimuksessa hyödynnettiin aikaisempia tutkimustuloksia ja eri laitevalmistajien ja metsäteollisuusintegraattien kokemuksia. Työssä esitettäviä arvioita voidaan hyödyntää myös sektoritasolla. Metsäteollisuuden jätevedenpuhdistamon lietteistä käsiteltävyyden kannalta vaativin on bioliete, jonka osuuden kasvaessa perinteinen mekaaninen puristaminen ja poltto vaikeutuvat useilla tehtailla merkittävästikin nykyään ja lähivuosina. Polton ongelmat ja niistä aiheutuva ajoittainen aumakompostointitarve voivat puoltaa joko sekalietteen termistä tai biotermistä kuivausta ennen polttamista. Toinen tapa ratkaista lieteongelma on käsitellä bio- ja primäärilietteet erikseen. Biolietteen lipeälinjakäsittelyssä liete lingotaan, käsitellään mustalipeällä, haihdutetaan ja poltetaan soodakattilassa. Bioliete voidaan myös mädättää ja käsitellä sen jälkeen perinteisessä mekaanisessa puristuksessa. Kaikki käsitellyt menetelmät ovat teknisesti toteutettavissa, kunhan tietyt prosessireunaehdot täyttyvät. Vaihtoehtoiset käsittelymenetelmät vähentävät lietteen jäteluonnetta, mutta vastaavasti kustannukset lisääntyvät usein merkittävästi. Menetelmien käytöstä aiheutuvat integraatin puhdistamolietteen käsittelyn kokonaiskustannukset laskettiin työn osana olevalla taulukkolaskentasovelluksella laitetoimittajien budjettitarjouksia hyödyntäen. Biolietteen poltto soodakattilassa tarjoaa kustannusten kannalta houkuttelevimman ratkaisun. Työhön sisältyvää laskentamenettelyä voidaan soveltaa periaatteessa minkä tahansa metsäteollisuusintegraatin tapaukseen.
Resumo:
Biologisessa jätteenkäsittelyssä syntyvää humusmassaa voidaan käyttää maanparannusaineena ja yleisenä lannoitusaineena. Termisellä kuivauksella saadaan humuksen kuiva-ainepitoisuutta nostettua mekaanisen kuivauksen jälkeen, jolloin sen tuotteistettavuus ja kuljetettavuus paranevat pienentyneen painon ja tilavuuden myötä. Kirjallisuusosassa on esitetty yleisiä termisen kuivauksen periaatteita sekä käsitelty lähemmin humuksen kuivausta. Lisäksi termisen kuivauksen hygienisoivaa vaikutusta on esitelty kirjallisuusosan lopussa. Tutkimusosassa luotiin tietokonepohjainen malli MK Protech Oy:n kehittämälle Traypack-kuivaimelle. Mallin luomisessa käytettiin apuna suoritettujen pilot-ajojen tuloksia sekä kirjallisuudesta saatuja tietoja. Malli sisältää kuivauksen aine- ja energiataseet sekä kuivaimen ja sen apulaitteiden mitoituksen. Sen lisäksi malli tulostaa erillisinä kokonaisuuksina prosessin laiteluettelon, investointikustannuslaskelman ja elinkaarianalyysin. Lisäksi tutkimusosassa laskettiin mallin avulla Rayongin kaupunkiin Thaimaahan rakenteilla olevan jätteenkäsittelylaitoksen tarpeeseen soveltuvan kuivaimen mitoitus- ja käyttötiedot sekä tarkasteltiin kuivaimen taloudellista kannattavuutta. Laitoksessa kuivataan 2080 kg/h kuiva-ainepitoisuudeltaan 30 % humusta loppukuiva-ainepitoisuuteen 50 %. Tarvittavaksi lämpötehoksi kuivaimeen saatiin 3,9 MW. Tästä 2,0 MW tarvitaan uutta systeemiin tuotavaa kuivauskaasua. Tällöin laitoksen investointikustannuksiksi saatiin 359 000 EUR. Laitoksen käyttökustannuksiksi saatiin 40 440 EUR vuodessa.
Resumo:
Tutkimuksen tavoitteena oli kartoittaa alueellisen jäteyhtiön Kymenlaakson Jäte Oy:n mahdollisuuksia rakeistaa ja termisesti kuivata mekaanisesti kuivattua mädätysjäännöstä sekä mahdollisuuksia toimittaa termisesti kuivattua materiaalia energiahyötykäyttöön. Tutkimuksessa selvitettiin myös kokemuksia lattialämmityksen käyttämisestä mädätysjäännöksen kuivaukseen. Tutkimuksessa perehdyttiin erilaisiin rakeistus- ja kuivausmenetelmiin sekä termisen kuivurin valintaan vaikuttaviin asioihin. Kuvaukset perustuvat kirjallisuudesta ja internetistä saatuihin tietoihin. Tekniikkakuvausten pohjalta lähdettiin kyselemään tarjouksia termisiä kuivauslaitteistoja myyviltä yrityksiltä. Tarjoukset pyydettiin kuiva-ainepitoisuuden muutokselle 30 %:sta 90 %:iin ja oletettiin, että kuivaukseen on käytettävissä lämpöä viideltä kaatopaikkakaasua käyttävältä mikroturbiinilta. Tutkimuksen aikana saatiin tarjous kuudelta yritykseltä. Saadut tarjoukset esiteltiin tiivistetysti raportissa ja kokonaisuudessaan ne sisällytettiin Kymenlaakson Jäte Oy:n laajempaan raporttiin, joka ei ole julkinen. Yritykset antoivat hyvin erilaisia tietoja siitä, mitä tarjoukseen sisältyy, joten tarjoukset eivät olleet suoraan vertailukelpoisia. Tarjouksista myös havaittiin, että jos Mäkikylän biokaasulaitokselta vastaanotettaisiin enimmäismäärä (19 500 t/a) mädätysjäännöstä, mikroturbiineilta saatava lämpömäärä ei riittäisi kuivaamaan kaikkea mädätysjäännöstä 90 % kuiva-ainepitoisuuteen. Tutkimuksen aikana huomattiin myös, että sitovan tarjouksen saamiseksi mädätysjäännös tulee toimittaa testattavaksi, jolloin saadaan vahvistus kuivausmenetelmän soveltuvuudesta kyseiselle materiaalille. Tutkimuksessa selvitettiin myös, minkälaisia kokemuksia löytyy lattialämmityksen käyttämisestä kuivaukseen niin Suomesta kuin maailmalta ja voiko menetelmää käyttää mädätysjäännöksen kuivaukseen. Kyseistä menetelmää on käytetty tehostamaan aurinkokuivausta, joten tutkimuksen aikana perehdyttiin erityisesti aurinkokuivaukseen liittyviin tieteellisiin artikkeleihin. Lattialämmityksen käytöstä löytyi niin heikkouksia kuin vahvuuksia. Suomessa aurinkokuivauksen ja lattialämmityksen yhdistelmä ei ole kuitenkaan päätynyt laajaan käyttöön ja syynä voidaan nähdä muun muassa kylmät ja pimeät vuodenajat sekä suuri pinta-alan tarve. Tutkimusraportissa selvitettiin lisäksi polttolaitosten edustajien kiinnostusta ja rajoituksia ottaa vastaan termisesti kuivattua mädätysjäännöstä. Tutkimuksen aikana otettiin yhteyttä alle 100 km etäisyydellä Kymenlaakson Jäte Oy:stä sijaitsevien jätteenpolttoluvan omaavien yritysten edustajiin. Saatuja vastauksia käsiteltiin tiivistetysti raportissa ja vastaukset sisällytettiin kokonaisuudessaan Kymenlaakson Jäte Oy:n laajempaan raporttiin, joka ei ole julkinen. Puhelinhaastattelujen pohjalta nähtiin, että yrityksillä on kiinnostusta materiaalia kohtaan, mutta samalla vastauksiin vaikuttavat mädätysjäännöksen analyysitulokset. Poltto-ominaisuuksiin liittyvät analyysit tullaan toteuttamaan vuoden 2012 aikana. Laitoksilla oli myös vaihtelevia rajoituksia materiaalia kohtaan, mutta analyysituloksista riippuen materiaalia voidaan hyödyntää energiana tuhansia tai jopa kymmeniä tuhansia tonneja vuodessa alle 100 km etäisyydellä Kymenlaakson Jäte Oy:stä.
Resumo:
Lempäälään aiotaan rakentaa uusi kaukolämpölaitos, jossa polttoaineena käytettäisiin haketta. Nykyään Lempäälässä tuotetaan kaukolämpöä maakaasulla, jonka käyttämisestä halutaan siirtyä käyttämään lähialueilta saatavaa biopolttoainetta. Tässä työssä halutaan selvittää, mitä hyötyjä saataisiin hakkeen koneellisesta kuivauksesta. Työn toisena tavoitteena on suunnitella ja pohtia biopolttoaineterminaalin rakentamista sekä käsitellä hakkeen varastointia yleensä. Työssä tutustutaan hakkeeseen aiheesta kertovan kirjallisuuden avulla. Työssä on myös laskettu hakkeen kuivauksesta saatavia hyötyjä hakkeen lämpöarvoon sekä energiatiheyteen. Erityisesti perehdytään metsätähdehakkeeseen, rankahakkeeseen, kuorihakkeeseen sekä sahanpuruun. Laskelmien tuloksista on havaittu, että suurin hyöty hakkeen energiatiheyden parantumisessa saadaan kun hake kuivataan 35 % kosteuspitoisuuteen. Tämän jälkeen energiatiheyden paraneminen tapahtuu hitaammin. Hakkeen kuivauksesta saadaan myös muita hyötyjä kuin energiatiheyden paraneminen. Kuivan hakkeen käsittelyn ja varastoinnin on havaittu olevan vaivattomampaa kuin märän hakkeen. Biopolttoaineterminaalin ja voimalaitoksen tulisi sijaita rinnakkain, jotta hakkeen kuivauksesta saadaan mahdollisimman kustannustehokasta. Näin ollen syntyisi myös säästöjä hakkeen kuljetuksen suhteen. Biopolttoaineterminaalin rakentamista varten tarvittaisiin tilaa alustavien laskelmien perusteella noin yksi hehtaari. Työssä on myös laskettu biopolttoaineterminaalin rakentamisesta aiheutuvia kustannuksia sekä hakkeen kuljetuksesta koituvia logistiikka kustannuksia. Haketerminaalin ja voimalaitoksen sijaintia Lempäälässä on myös kartoitettu.
Resumo:
Vanerin tai kertopuun valmistusprosessissaviilun kuivaukseen käytetään suurin osa koko valmistusprosessin primäärienergiasta. Viilunkuivauskoneessa viilun sisältämä vesi siirretään tyypillisesti prosessihöyryllä lämmitettyyn viilunkuivaajan kiertoilmaan höyrystämällä ja poistetaanviilunkuivaajasta poistoilman mukana. Viilunkuivaajan poistoilma on lämmintä jaerittäin suuren kosteuspitoisuutensa takia sisältää runsaasti energiaa. Tyypillisellä viilunkuivaajalla poistoilmaan sitoutunut lämpöteho vaihtelee prosessiolosuhteista riippuen välillä 2,7-5,7 MW. Diplomityössä tutkittiin viilunkuivaajan poistoilman sisältämän lämmön talteenottoa laitteistolla, johon kuuluu lämmöntalteenottopesuri, jossa poistoilmalla lämmitetään tuotantolaitoksen tukkipuun hautomon kiertovettä sekä ilma-ilma-lämmönsiirrin, jolla lämmitetään pesurista poistuvan ilman jäännöslämmöllä ulkoilmaa tehdassalin tuloilmakäyttöön. Työn tavoitteena oli kehittää lämmöntalteenottojärjestelmän suunnittelua, mitoitusta ja ajotapoja. Työssä analysoitiin teoreettisesti pesuria ja ilmalämmönsiirrintä, kehitettiin lämmöntalteenottopesurin simulointimenetelmä ja mitattiin toiminnassa olevia talteenottolaitteistoja. Tutkimuksessa todettiin lämmöntalteenottohyötysuhteen vaihtelevan lämmityskaudella välillä 50-70 %. Lämmöntalteenottolaitteiston pesurin veteen saatava teho riippuu ensisijaisesti viilunkuivaajan poistoilman lämpösisällöstä, joka on enimmäkseen kosteusriippuvainen ja ilmanvaihtoilmaan saatava teho ulkolämpö-tilan määräämästä tehontarpeesta. Pesurin vesijärjestelmän vaikutusmekanismit pesurin suorituskykyyn tunnistettiin ja niiden pohjalta annetaan suositukset mitoitukseen ja ajotapaan. Lämmöntalteenottolaitteiston lämpötehon tasapainottamiseen pesurin ja ilma-ilma-lämmönsiirtimen välillä mitoituksen avulla esitellään työkalut.
Resumo:
Tämä tutkimus tehtiin osana Vapo Oy:n uuden turvetuotantotekniikan kehitystä. Kihniön Aitonevalle on rakennettu uuden turvetuotantotekniikan tutkimusalue, johon kuuluu muun muassa yksi lämmittämätön kuivatuskenttä sekä yksi aurinkolämmöllä lämmitetty kuivatuskenttä aurinkokeräimineen ja putkistoineen. Työn tavoitteena oli selvittää aurinkolämmöllä lämmitetyn kuivatuskentän tuotannon teho verrattuna lämmittämättömään kenttään. Toinen tavoite oli selvittää Aitonevan tutkimusalueella käytössä olevista aurinkokeräimistä turpeen kuivaustarkoitukseen parhaiten soveltuva keräin. Tuotantoa uudella menetelmällä tehtiin vuoden 2005 kesän ajan. Tuotantotehon ero pyrittiin selvittämään seuraamalla yksittäisten turvetuotantoerien eli satokiertojen kuivumista kosteusnäyttein ja toisaalta vertaamalla koko kesän aikana saatua tuotantoa. Aurinkokeräimien vertailu toteutettiin energiamäärä- ja hyötysuhdemittauksin. Lisäksi kuivatuskenttien lämpötiloja mitattiin kentässä tapahtuvan lämmönsiirron selvittämiseksi. Mittausten perusteella havaittiin, ettälämmitetyn ja lämmittämättömän kentän välillä on tutkimuksen aikaisella kenttärakenteella 6-8 % ero satokierron aikana haihdutetussa vesimäärässä. Tätä voidaanpitää odotuksia pienempänä. Kenttien lämpötilamittausten perusteella osoittautui, että kentän pintarakenne tulisi eristää maaperästä, koska kentän alle siirrettyä lämpöä siirtyy häviöinä kylmään pohjamaahan. Käytössä olleista aurinkokeräimistä parhaaksi osoittautui katettu kumimattokeräin niin hyötysuhteen kuin tehokkuudenkin puolesta. Työn aikana todettiin, että tutkimusta keräimien ja varsinkinkenttärakenteen suhteen tulee jatkaa tulevaisuudessa ennen aurinkokeräinkentän laajamittaisen käytön aloittamista.
Resumo:
EU:n päästökaupan ensimmäinen jakso alkoi 1.1.2005. Päästökauppa on aiheuttanut sen piiriin kuuluvalle teollisuudelle monia haasteita ja riskejä kasvavien kustannusten muodossa. Massa- ja paperiteollisuus on päästökaupanpiiriin kuuluva teollisuudenala, johon päästökaupan kustannukset vaikuttavat haitallisesti globaalin hinnoittelun vuoksi. Massa- ja paperiteollisuudelle päästökaupasta voi koitua kustannuksia päästöoikeuksien ostamisesta, sähkön, polttoaineiden ja kemikaalien hinnan noususta sekä raaka-ainehuollon vaikeutumisesta. Toisaalta tehtaat voivat hyötyä päästökaupasta alittaessaan päästöoikeutensa tai myydessään sähköä ulkopuoliseen verkkoon. Massa- ja paperiteollisuudessa sähköä kuluu enimmäkseen pumppauksiin eli massan siirtoon ja mekaanisen massan valmistukseen. Suurimpia sähköenergian kuluttajia sellun valmistuksessa ovat soodakattila, puunkäsittely, valkaisu ja lajittelu. Lämpöä tarvitaan haihdutus-, kuivaus- ja keittoprosesseissa. Kemikaaleista klooridioksidin valmistuksessa käytettävä natriumkloraatti on kustannusten kannalta merkittävin kemikaali. Tässä työssä tutkittiin päästökaupan aiheuttamien kustannusten vähentämismahdollisuuksia kohdetehtaalla. Suurin potentiaali liittyy meesauunissa poltettavan maakaasun korvaamiseen mäntyöljyllä tai biomassan kaasutuskaasulla. Kemikaalikulutuksen osalta happidelignifiointi on merkittävin mahdollisuuskustannusten alentamiseksi. Lisäksi päästökaupan kustannuksia voidaan alentaa muun muassa oikealla mitoituksella ja sekundäärilämpöjen optimaalisella käytöllä.
Resumo:
Työssä tarkastellaan vortex-putken soveltuvuutta kostean ilman kuivatukseen ja vapautuvan latenttilämmön hyödyntämiseen. Soveltuvuutta arvioidaan veden ja ilman massataseita hyväksi käyttäen ja stationaarisen systeemin energiataseen avulla. Työn mittauksia varten rakennettiin koelaitteisto, jonka avulla mitattiin miten lämpötilaerot kuumassa ja kylmässä päässä käyttäytyivät mitattaessa kuivalla ilmalla ja ilmalla, jota oli kostutettu. Mitattavia suureita olivat syöttöpaine- ja lämpötila, lämpötilat kuumassa ja kylmässä päässä, kuuman pään paine ja tilavuusvirta tai virtausnopeus ja kuuman pään suhteellinen kosteus. Mittaustulosten avulla laskettiin lämpötilan muutokset kummassakin päässä ja verrattiin kuivan ja kostean ilman mittauksien tuloksia toisiinsa. Lisäksi laskettiin tiivistyneen veden määrä ja veden ja ilman massavirrat molemmissa päissä. Näin voitiin laskea tiivistymisessä vapautuva energia ja tarkastella mihin se siirtyy. Tulosten perusteella vortex-putki soveltuu hyvin huonosti ilman kuivatukseen. Tiivistyneen veden määrä ja sitä kautta tiivistymisessä vapautunut energia, olivat pieniä. Suurin osa kosteudesta meni kuuman pään virtauksen mukana. Tiivistymisessä vapautunut energia siirtyi kylmään päähän.
Resumo:
Kaatopaikalle sijoitetut biohajoavat orgaaniset jätteet muodostavat jätetäytön hapettomissa olosuhteissa kaatopaikkakaasua, joka koostuu pääasiassa metaanista ja hiilidioksidista. Kaatopaikkakaasun sisältämän metaanin takia, kaasusisältää merkittävästi energiaa, joka on hyödynnettävissä eri tavoin. Tämän diplomityön tavoitteena oli tarkastella vaihtoehtoja Anjalankosken Keltakankaan kaatopaikoilla muodostuvan kaatopaikkakaasun hyödyntämiseksi. Tarkastellut vaihtoehdot tarjoavat ympäristöllisten hyötyjen lisäksi liiketoiminnallista hyötyä Ekoparkissa toimiville yrityksille. Tutkimuksessa tehdyt laskelmatosoittivat, että työssä tarkastellut kaatopaikkakaasun hyötykäyttövaihtoehdot ovat sekä taloudellisesti että kaasun riittävyyden kannalta hyödynnettävissä. Esimerkiksi kaatopaikkakaasun hyödyntämisellä kaukolämmön tuotannossa voidaan kattaa noin kolmannes Anjalankosken vuotuisesta kaukolämmön tarpeesta. Kaatopaikkakaasun lietteen kuivauskapasiteetti kattaa Pohjois-Kymenlaaksossa muodostuvan jätevesilietteen käsittelytarpeen. Biopolttoaineen kuivauskapasiteetti on riittävä olemassa oleviin valmistuslaitosten tuotantokapasiteetteihin verrattuna. Myös perinteisillä sähkön- ja lämmöntuotantotekniikoilla voidaan kattaa Ekoparkin oma sähkön- ja lämmöntarve. Kaatopaikkavesien haihdutus ei tulosten perusteella ole sekä taloudellisesti että kaasun riittävyyden kannalta hyödynnettävissä. Tuhkan vitrifioinnissa haasteen muodostaa investointikustannuksen suuruus. Anjalankosken Ekoparkin yritykset voivat hyödyntää työn tuloksia uuden liiketoiminnan kehittämiseen. Lisäksi tuloksia voidaan hyödyntää soveltaen eri kokoluokan kaatopaikkojen kaatopaikkakaasujen hyötykäyttöä suunniteltaessa.
Resumo:
Työn tavoitteena on ollut selvittää HFV-kuivauksen taloudellisia vaikutuksia, kuivausmenetelmän toimintaperiaatteita, ominaisuuksia ja Lahden ammattikorkeakoulun Tekniikan laitoksen kuivaustutkimuksesta saatuja tuloksia. Tutkimuskohteeksi on valittu sydänkeskeinen koivu, joka soveltuu erinomaisesti uuden kuivausmenetelmän raaka-aineeksi, sillä sen hankintakustannukset muodostuvat tavanomaista koivusahatavaraa alhaisemmaksi ja sillä saavutetaan raaka-aineen jatkojalostusarvon huomattava nousu. Työn teoriaosassa on käsitelty puun kuivausta, sen yleisiä piirteitä ja erikuivausvaihtoehtoja. Koivun kuivauksesta ja kuivauskustannuksista löytyy varsinvähän julkaistua tutkimustietoa, jonka johdosta kuivauskustannuksia kartoitettiin myös kotimaisten havupuiden osalta. Tuoreen koivun kuivaus muutamassa tunnissa puusepänkuivaksi aihioksi ilman kuivausvirheitä on Lahden ammattikorkeakoulun Tekniikan laitoksen tutkimuksissa saatujen tuloksien mukaan mahdollista. Tässä tutkimuksessa on käsitelty neljän eri teholuokan kuivaamoinvestointivaihtoehtoa. Vaihtoehdot poikkeavat toisistaan niin hankintahinnan, tuotantokapasiteetin kuinvalmistuskustannuksienkin suhteen. Mikäli kuivaamon tuotantokapasiteetti ei olemääräävä tekijä ja investoinnilla ei ole pääomarajoitetta, niin kannattavimmaksi investointivaihtoehdoksi osoittautuu suurimman kokoluokan HFV-kuivaamolaitteisto.
Resumo:
UPM-Pelloksen vaneritehtaat muodostavat Euroopan suurimman vanerintuotantoyksiköntuotantokapasiteetilla mitattuna. Pelloksen vaneritehtailla on kolme eri tehdasta yhdellä tehdasalueella. Vaneritehtaiden viilunkuivaus on hyvin merkittävä primäärienergian kuluttaja. Tehtaiden prosessienergian saannista huolehtii Järvi-Suomen Voiman voimalaitos. Viilunkuivaajien poistokaasuista jalauhteista saadaan talteen merkittävästi sekundäärienergiaa. Sekundäärienergia kulutetaan pääosin hautomoaltaalla tukkien haudontaan. Tukkien haudonta pyritäänhoitamaan lähes kokonaan sekundäärienergialla. Primäärihöyryä tarvitaan altaalle kuitenkin huoltoseisakkien aikana. Tässä diplomityössä tutustutaan vanerin valmistuksen prosessiin Pelloksen vaneritehtailla. Työssä kartoitetaan tehtaiden prosessien, hautomoaltaan ja voimalaitoksen välisiä energiavirtauksia. Työn tarkoituksena on saada selville mahdollisia hyödyntämättömiä potentiaaleja tehtaiden energiankäytössä. Työssä pohditaan myös mahdollisia eri tapoja energiankäytön tehostukselle. Voimalaitoksen höyrykuorma on kuivauskoneiden kulutuksesta riippuen ajoittain voimakkaasti vaihtelevaa. Höyrykuorman vaihtelu aiheuttaa ongelmia voimalaitoksen tuotannolle. Työssä pohditaan höyrykuorman tasausmahdollisuutta muun muassa höyryakun avulla.
Resumo:
Työssä kartoitetaan käytössä olevia pilkkeen ja hakkeen keinokuivausmenetelmiä. Lisäksi arvioidaan menetelmien energiankulutusta ja kustannuksia, sekä käydään läpi kuivaajan suunnittelussa huomioon otettavia seikkoja. Työn ohessa on tehty Excel-laskentataulukko, jonka avulla voidaan arvioida lämpöyrittäjyyden kannattavuutta koko tuotantoketju huomioon ottaen. Lopussa tutkitaan kolmen erityyppisen pilkekuivurin käyttöä ja arvioidaan laskentataulukon avulla niiden vaikutuksia pilkeyrittäjän talouteen. Yleisin puupolttoaineiden keinokuivausmenetelmä on kylmäilmakuivaus. Sääriippuvuudesta ja usein epätasaisesta kuivauslaadusta johtuen se soveltuu vain pienimuotoiseen ja sivutoimiseen polttoainetuotantoon. Lisälämmityksellä parannetaan ilman kuivauskykyä, jolloin kuivaus on nopeampaa, loppukosteudet alhaisempia ja vuotuinen käyttöaika pitempi. Lämmitysratkaisun valinta riippuu kuivurin halutusta vuotuisesta käyttöajasta ja tuotantomääristä. Ammattimaiseen ja ympärivuotiseen pilketuotantoon soveltuu parhaiten korkeita, 70 - 90 °C lämpötiloja käyttävä kuivuri. Korkealämpötila-kuivurissa on tärkeää huolehtia riittävästä eristyksestä ja säädellystä ilmanvaihdosta. Suurilla polttopuun tuotantomäärillä kuljetuskustannukset korostuvat. Samalla kasvaa markkinoinnin tarve. Mainonnassa voidaan hyödyntää tehokasta kuivausmenetelmää.