116 resultados para biotechnologies
Resumo:
What are the ethical and political implications when the very foundations of life —things of awe and spiritual significance — are translated into products accessible to few people? This book critically analyses this historic recontextualisation. Through mediation — when meaning moves ‘from one text to another, from one discourse to another’ — biotechnology is transformed into analysable data and into public discourses. The unique book links biotechnology with media and citizenship. As with any ‘commodity’, biological products have been commodified. Because enormous speculative investment rests on this, risk will be understated and benefit will be overstated. Benefits will be unfairly distributed. Already, the bioprospecting of Southern megadiverse nations, legally sanctioned by U.S. property rights conventions, has led to wealth and health benefits in the North. Crucial to this development are biotechnological discourses that shift meanings from a “language of life” into technocratic discourses, infused with neo-liberal economic assumptions that promise progress and benefits for all. Crucial in this is the mass media’s representation of biotechnology for an audience with poor scientific literacy. Yet, even apparently benign biotechnology spawned by the Human Genome Project such as prenatal screening has eugenic possibilities, and genetic codes for illness are eagerly sought by insurance companies seeking to exclude certain people. These issues raise important questions about a citizenship that is founded on moral responsibility for the wellbeing of society now and into the future. After all, biotechnology is very much concerned with the essence of life itself. This book provides a space for alternative and dissident voices beyond the hype that surrounds biotechnology.
Resumo:
This dissertation presents an analysis of the representations of food biotechnologies in Italy. The thesis uses the analysis of discourse to illustrate the articulated ways in which representations are instantiated in different contexts. The theoretical thrust of the work resides in its discussion of the basic tenets of both Social Representations Theory and Discursive Psychology. The thesis offers a detailed description of the two frameworks; affinities and difference are highlighted, and a serious effort is made to develop an integrated set of theoretical resources to answer the research questions. The thesis proposes to combine a discursive methodology with Social Representations Theory. After a description of the relevant legislative framework follows an illustration of the categories used for the textual analysis. The study proposes the textual analysis of the following data: the first declaration issued by a small Italian council rejecting biotechnologies; four texts which focus on positions taken by the Catholic Church in the matter of food biotechnologies; several transcripts from a public debate in a small community of the north west of Italy. The latter study, which included an ethnographic dimension, focuses on recordings from interviews, a focus group, a public meeting and newspaper articles. Particular attention is paid to ideological representations and to the relevance of citizenship and governance to debates about food biotechnologies.
Resumo:
This thesis presents the development of chip-based technology for informative in vitro cancer diagnostics. In the first part of this thesis, I will present my contribution in the development of a technology called “Nucleic Acid Cell Sorting (NACS)”, based on microarrays composed of nucleic acid encoded peptide major histocompatibility complexes (p/MHC), and the experimental and theoretical methods to detect and analyze secreted proteins from single or few cells.
Secondly, a novel portable platform for imaging of cellular metabolism with radio probes is presented. A microfluidic chip, so called “Radiopharmaceutical Imaging Chip” (RIMChip), combined with a beta-particle imaging camera, is developed to visualize the uptake of radio probes in a small number of cells. Due to its sophisticated design, RIMChip allows robust and user-friendly execution of sensitive and quantitative radio assays. The performance of this platform is validated with adherent and suspension cancer cell lines. This platform is then applied to study the metabolic response of cancer cells under the treatment of drugs. Both cases of mouse lymphoma and human glioblastoma cell lines, the metabolic responses to the drug exposures are observed within a short time (~ 1 hour), and are correlated with the arrest of cell-cycle, or with changes in receptor tyrosine kinase signaling.
The last parts of this thesis present summaries of ongoing projects: development of a new agent as an in vivo imaging probe for c-MET, and quantitative monitoring of glycolytic metabolism of primary glioblastoma cells. To develop a new agent for c-MET imaging, the one-bead-one-compound combinatorial library method is used, coupled with iterative screening. The performance of the agent is quantitatively validated with cell-based fluorescent assays. In the case of monitoring the metabolism of primary glioblastoma cell, by RIMChip, cells were sorting according to their expression levels of oncoprotein, or were treated with different kinds of drugs to study the metabolic heterogeneity of cancer cells or metabolic response of glioblastoma cells to drug treatments, respectively.
Resumo:
"Mémoire présenté à la Faculté des études supérieures en vue de l'obtention du grade de Maîtrise en droit (LL.M.) Option droit, Biotechnologies et société"
Resumo:
Depuis les années quatre-vingt-dix Cuba développe et commercialise des vaccins et méthodes en biotechnologies médicales dont certains sont des premières mondiales. L'île est alors encore considérée comme un pays en voie de développement et est la cible d’un embargo imposé par les États-Unis depuis plus de trente ans. Or les biotechnologies sont une science aussi coûteuse en matériel qu'en ressources humaines très spécialisées et elles sont de ce fait réservées aux pays de la sphère scientifique centrale. Ces réussites suggèrent la mise en place d'un potentiel scientifique et technique réel autant qu'elles peuvent constituer un artéfact dans un secteur moins développé ou moins pérenne qu'il n'y paraît. Quel est le vrai visage des biotechnologies cubaines au milieu des années deux-mille ? C'est à cette question que tente de répondre cette étude. Elle consiste dans un premier temps à retracer les paramètres du développement des institutions de recherche en biotechnologies dans un contexte qui connaît peu de répit depuis l'avènement de la Révolution : indicateurs socio-économiques bas, embargo, planification socialiste, isolement géopolitique, crises économiques mondiales, dissolution du bloc soviétique... Elle se poursuit avec une analyse bibliométrique permettant de donner un visage quantitatif des réalisations cubaines dans le domaine : au-delà des réalisations mises de l'avant, dans quelles revues et dans quels domaines les chercheurs cubains en biotechnologie publient-ils ? Avec quels pays collaborent-ils et par quels pays sont-ils cités ? Quelle est leur place dans le monde ? Nous exploiterons l'ensemble de ces indicateurs et de ces éléments historiques pour conclure, au tournant des années deux-mille, à l'existence d'un potentiel scientifique et technique développé mais d'une science aux ressources maigres constamment tenue de rapporter un certain capital économique aussi bien que politique. En cohérence avec la dialectique socialiste propre à l'île, les sciences cubaines, depuis 1959, ne constituent jamais une fin en soi mais restent un moyen politique et social. En 2006 elles le sont encore. Malgré leurs réalisations elles touchent aux limites de la planification et réclament leur indépendance face au politique afin d'exploiter pleinement leur potentiel, bien réel.
Resumo:
Background: New challenges are rising in the animal protein market, and one of the main world challenges is to produce more in shorter time, with better quality and in a sustainable way. Brazil is the largest beef exporter in volume hence the factors affecting the beef meat chain are of major concern in countrýs economy. An emerging class of biotechnological approaches, the molecular markers, is bringing new perspectives to face these challenges, particularly after the publication of the first complete livestock genome (bovine), which has triggered a massive initiative to put in practice the benefits of the so called the Post-Genomic Era. Review: This article aimed at showing the directions and insights in the application of molecular markers on livestock genetic improvement and reproduction as well at organizing the progress so far, pointing some perspectives of these emerging technologies in Brazilian ruminant production context. An overview on the nature of the main molecular markers explored in ruminant production is provided, which describes the molecular bases and detection approaches available for microsatellites (STR) and single nucleotide polymorphisms (SNP). A topic is dedicated to review the history of association studies between markers and important trait variation in livestock, showing the timeline starting on quantitative trait loci (QTL) identification using STR markers and ending in high resolution SNP panels to proceed whole genome scans for phenotype/genotype association. Also the article organizes this information to reveal how QTL prospection using STR could open ground to the feasibility of marker-assisted selection and why this approach is quickly being replaced by studies involving the application of genome-wide association using SNP research in a new concept called genomic selection. Conclusion: The world's scientific community is dedicating effort and resources to apply SNP information in livestock selection through the development of high density panels for genomic association studies, connecting molecular genetic data with phenotypes of economic interest. Once generated, this information can be used to take decisions in genetic improvement programs by selecting animals with the assistance of molecular markers.
Resumo:
Dr. Young-Ki Paik directs the Yonsei Proteome Research Center in Seoul, Korea and was elected as the President of the Human Proteome Organization (HUPO) in 2009. In the December 2009 issue of the Current Pharmacogenomics and Personalized Medicine (CPPM), Dr. Paik explains the new field of pharmacoproteomics and the approaching wave of “proteomics diagnostics” in relation to personalized medicine, HUPO’s role in advancing proteomics technology applications, the HUPO Proteomics Standards Initiative, and the future impact of proteomics on medicine, science, and society. Additionally, he comments that (1) there is a need for launching a Gene-Centric Human Proteome Project (GCHPP) through which all representative proteins encoded by the genes can be identified and quantified in a specific cell and tissue and, (2) that the innovation frameworks within the diagnostics industry hitherto borrowed from the genetics age may require reevaluation in the case of proteomics, in order to facilitate the uptake of pharmacoproteomics innovations. He stresses the importance of biological/clinical plausibility driving the evolution of biotechnologies such as proteomics,instead of an isolated singular focus on the technology per se. Dr. Paik earned his Ph.D. in biochemistry from the University of Missouri-Columbia and carried out postdoctoral work at the Gladstone Foundation Laboratories of Cardiovascular Disease, University of California at San Francisco. In 2005, his research team at Yonsei University first identified and characterized the chemical structure of C. elegans dauer pheromone (daumone) which controls the aging process of this nematode. He is interviewed by a multidisciplinary team specializing in knowledge translation, technology regulation, health systems governance, and innovation analysis.
Resumo:
Aux confluences historiques et conceptuelles de la modernité, de la technologie, et de l’« humain », les textes de notre corpus négocient et interrogent de façon critique les possibilités matérielles et symboliques de la prothèse, ses aspects phénoménologiques et spéculatifs : du côté subjectiviste et conceptualiste avec une philosophie de la conscience, avec Merleau-Ponty ; et de l’autre avec les épistémologues du corps et historiens de la connaissance Canguilhem et Foucault. Le trope prometteur de la prothèse impacte sur les formations discursives et non-discursives concernant la reconstruction des corps, là où la technologie devient le corrélat de l’identité. La technologie s’humanise au contact de l’homme, et, en révélant une hybridité supérieure, elle phagocyte l’humain du même coup. Ce travail de sociologie des sciences (Latour, 1989), ou encore d’anthropologie des sciences (Hakken, 2001) ou d’anthropologie bioculturelle (Andrieu, 1993; Andrieu, 2006; Andrieu, 2007a) se propose en tant qu’exemple de la contribution potentielle que l’anthropologie biologique et culturelle peut rendre à la médecine reconstructrice et que la médecine reconstructrice peut rendre à la plastique de l’homme ; l’anthropologie biologique nous concerne dans la transformation biologique du corps humain, par l’outil de la technologie, tant dans son histoire de la reconstruction mécanique et plastique, que dans son projet d’augmentation bionique. Nous établirons une continuité archéologique, d’une terminologie foucaldienne, entre les deux pratiques. Nous questionnons les postulats au sujet des relations nature/culture, biologie/contexte social, et nous présentons une approche définitionnelle de la technologie, pierre angulaire de notre travail théorique. Le trope de la technologie, en tant qu’outil adaptatif de la culture au service de la nature, opère un glissement sémantique en se plaçant au service d’une biologie à améliorer. Une des clés de notre recherche sur l’augmentation des fonctions et de l’esthétique du corps humain réside dans la redéfinition même de ces relations ; et dans l’impact de l’interpénétration entre réalité et imaginaire dans la construction de l’objet scientifique, dans la transformation du corps humain. Afin de cerner les enjeux du discours au sujet de l’« autoévolution » des corps, les théories évolutionnistes sont abordées, bien que ne représentant pas notre spécialité. Dans le cadre de l’autoévolution, et de l’augmentation bionique de l’homme, la somation culturelle du corps s’exerce par l’usage des biotechnologies, en rupture épistémologique de la pensée darwinienne, bien que l’acte d’hybridation évolutionnaire soit toujours inscrit dans un dessein de maximisation bionique/génétique du corps humain. Nous explorons les courants de la pensée cybernétique dans leurs actions de transformation biologique du corps humain, de la performativité des mutilations. Ainsi technologie et techniques apparaissent-elles indissociables de la science, et de son constructionnisme social.
Resumo:
Biorefineries, producing fuels, green chemicals and bio-products, offer great potential for improving the profitability and sustainability of tropical agricultural industries. Biomass from tropical crops like sugarcane, sweet sorghum, palm and cassava offer great potential because of the high biomass growth potential under favourable climatic conditions. Biorefineries aim to convert waste residues through biochemical and enzymatic processes to low cost fermentable sugars which are a platform for value-adding. Through subsequent fermentation utilising microbial biotechnologies or chemical synthesis, the sugars can be converted to fuels including ethanol and butanol, oils, organic acids such as lactic and levulinic acid and polymer precursors. Other biorefinery products can include food and animal feeds, plastics, fibre products and resins. Pretreatment technologies are a key to unlocking this potential and new technologies are emerging. This paper will address the opportunities available for tropical biorefineries to contribute to the future profitability of tropical agricultural industries. The importance of pretreatment technologies will be discussed.
Resumo:
Technology is increasingly infiltrating all aspects of our lives and the rapid uptake of devices that live near, on or in our bodies are facilitating radical new ways of working, relating and socialising. This distribution of technology into the very fabric of our everyday life creates new possibilities, but also raises questions regarding our future relationship with data and the quantified self. By embedding technology into the fabric of our clothes and accessories, it becomes ‘wearable’. Such ‘wearables’ enable the acquisition of and the connection to vast amounts of data about people and environments in order to provide life-augmenting levels of interactivity. Wearable sensors for example, offer the potential for significant benefits in the future management of our wellbeing. Fitness trackers such as ‘Fitbit’ and ‘Garmen’ provide wearers with the ability to monitor their personal fitness indicators while other wearables provide healthcare professionals with information that improves diagnosis. While the rapid uptake of wearables may offer unique and innovative opportunities, there are also concerns surrounding the high levels of data sharing that come as a consequence of these technologies. As more ‘smart’ devices connect to the Internet, and as technology becomes increasingly available (e.g. via Wi-Fi, Bluetooth), more products, artefacts and things are becoming interconnected. This digital connection of devices is called The ‘Internet of Things’ (IoT). IoT is spreading rapidly, with many traditionally non-online devices becoming increasingly connected; products such as mobile phones, fridges, pedometers, coffee machines, video cameras, cars and clothing. The IoT is growing at a rapid rate with estimates indicating that by 2020 there will be over 25 billion connected things globally. As the number of devices connected to the Internet increases, so too does the amount of data collected and type of information that is stored and potentially shared. The ability to collect massive amounts of data - known as ‘big data’ - can be used to better understand and predict behaviours across all areas of research from societal and economic to environmental and biological. With this kind of information at our disposal, we have a more powerful lens with which to perceive the world, and the resulting insights can be used to design more appropriate products, services and systems. It can however, also be used as a method of surveillance, suppression and coercion by governments or large organisations. This is becoming particularly apparent in advertising that targets audiences based on the individual preferences revealed by the data collected from social media and online devices such as GPS systems or pedometers. This type of technology also provides fertile ground for public debates around future fashion, identity and broader social issues such as culture, politics and the environment. The potential implications of these type of technological interactions via wearables, through and with the IoT, have never been more real or more accessible. But, as highlighted, this interconnectedness also brings with it complex technical, ethical and moral challenges. Data security and the protection of privacy and personal information will become ever more present in current and future ethical and moral debates of the 21st century. This type of technology is also a stepping-stone to a future that includes implantable technology, biotechnologies, interspecies communication and augmented humans (cyborgs). Technologies that live symbiotically and perpetually in our bodies, the built environment and the natural environment are no longer the stuff of science fiction; it is in fact a reality. So, where next?... The works exhibited in Wear Next_ provide a snapshot into the broad spectrum of wearables in design and in development internationally. This exhibition has been curated to serve as a platform for enhanced broader debate around future technology, our mediated future-selves and the evolution of human interactions. As you explore the exhibition, may we ask that you pause and think to yourself, what might we... Wear Next_? WEARNEXT ONLINE LISTINGS AND MEDIA COVERAGE: http://indulgemagazine.net/wear-next/ http://www.weekendnotes.com/wear-next-exhibition-gallery-artisan/ http://concreteplayground.com/brisbane/event/wear-next_/ http://www.nationalcraftinitiative.com.au/news_and_events/event/48/wear-next http://bneart.com/whats-on/wear-next_/ http://creativelysould.tumblr.com/post/124899079611/creative-weekend-art-edition http://www.abc.net.au/radionational/programs/breakfast/smartly-dressed-the-future-of-wearable-technology/6744374 http://couriermail.newspaperdirect.com/epaper/viewer.aspx RADIO COVERAGE http://www.abc.net.au/radionational/programs/breakfast/wear-next-exhibition-whats-next-for-wearable-technology/6745986 TELEVISION COVERAGE http://www.abc.net.au/radionational/programs/breakfast/wear-next-exhibition-whats-next-for-wearable-technology/6745986 https://au.news.yahoo.com/video/watch/29439742/how-you-could-soon-be-wearing-smart-clothes/#page1
Resumo:
Embryonic stem cells offer potentially a ground-breaking insight into health and diseases and are said to offer hope in discovering cures for many ailments unimaginable few years ago. Human embryonic stem cells are undifferentiated, immature cells that possess an amazing ability to develop into almost any body cell such as heart muscle, bone, nerve and blood cells and possibly even organs in due course. This remarkable feature, enabling embryonic stem cells to proliferate indefinitely in vitro (in a test tube), has branded them as a so-called miracle cure . Their potential use in clinical applications provides hope to many sufferers of debilitating and fatal medical conditions. However, the emergence of stem cell research has resulted in intense debates about its promises and dangers. On the one hand, advocates hail its potential, ranging from alleviating and even curing fatal and debilitating diseases such as Parkinson s, diabetes, heart ailments and so forth. On the other hand, opponents decry its dangers, drawing attention to the inherent risks of human embryo destruction, cloning for research purposes and reproductive cloning eventually. Lately, however, the policy battles surrounding human embryonic stem cell innovation have shifted from being a controversial research to scuffles within intellectual property rights. In fact, the ability to obtain patents represents a pivotal factor in the economic success or failure of this new biotechnology. Although, stem cell patents tend to more or less satisfy the standard patentability requirements, they also raise serious ethical and moral questions about the meaning of the exclusions on ethical or moral grounds as found in European and to an extent American and Australian patent laws. At present there is a sort of a calamity over human embryonic stem cell patents in Europe and to an extent in Australia and the United States. This in turn has created a sense of urgency to engage all relevant parties in the discourse on how best to approach patenting of this new form of scientific innovation. In essence, this should become a highly favoured patenting priority. To the contrary, stem cell innovation and its reliance on patent protection risk turmoil, uncertainty, confusion and even a halt on not only stem cell research but also further emerging biotechnology research and development. The patent system is premised upon the fundamental principle of balance which ought to ensure that the temporary monopoly awarded to the inventor equals that of the social benefit provided by the disclosure of the invention. Ensuring and maintaining this balance within the patent system when patenting human embryonic stem cells is of crucial contemporary relevance. Yet, the patenting of human embryonic stem cells raises some fundamental moral, social and legal questions. Overall, the present approach of patenting human embryonic stem cell related inventions is unsatisfactory and ineffective. This draws attention to a specific question which provides for a conceptual framework for this work. That question is the following: how can the investigated patent offices successfully deal with patentability of human embryonic stem cells? This in turn points at the thorny issue of application of the morality clause in this field. In particular, the interpretation of the exclusions on ethical or moral grounds as found in Australian, American and European legislative and judicial precedents. The Thesis seeks to compare laws and legal practices surrounding patentability of human embryonic stem cells in Australia and the United States with that of Europe. By using Europe as the primary case study for lessons and guidance, the central goal of the Thesis then becomes the determination of the type of solutions available to Europe with prospects to apply such to Australia and the United States. The Dissertation purports to define the ethical implications that arise with patenting human embryonic stem cells and intends to offer resolutions to the key ethical dilemmas surrounding patentability of human embryonic stem cells and other morally controversial biotechnology inventions. In particular, the Thesis goal is to propose a functional framework that may be used as a benchmark for an informed discussion on the solution to resolving ethical and legal tensions that come with patentability of human embryonic stem cells in Australian, American and European patent worlds. Key research questions that arise from these objectives and which continuously thread throughout the monograph are: 1. How do common law countries such as Australia and the United States approach and deal with patentability of human embryonic stem cells in their jurisdictions? These practices are then compared to the situation in Europe as represented by the United Kingdom (first two chapters), the Court of Justice of the European Union and the European Patent Office decisions (Chapter 3 onwards) in order to obtain a full picture of the present patenting procedures on the European soil. 2. How are ethical and moral considerations taken into account at patent offices investigated when assessing patentability of human embryonic stem cell related inventions? In order to assess this part, the Thesis evaluates how ethical issues that arise with patent applications are dealt with by: a) Legislative history of the modern patent system from its inception in 15th Century England to present day patent laws. b) Australian, American and European patent offices presently and in the past, including other relevant legal precedents on the subject matter. c) Normative ethical theories. d) The notion of human dignity used as the lowest common denominator for the interpretation of the European morality clause. 3. Given the existence of the morality clause in form of Article 6(1) of the Directive 98/44/EC of the European Parliament and of the Council of 6 July 1998 on the legal protection of biotechnological inventions which corresponds to Article 53(a) European Patent Convention, a special emphasis is put on Europe as a guiding principle for Australia and the United States. Any room for improvement of the European morality clause and Europe s current manner of evaluating ethical tensions surrounding human embryonic stem cell inventions is examined. 4. A summary of options (as represented by Australia, the United States and Europe) available as a basis for the optimal examination procedure of human embryonic stem cell inventions is depicted, whereas the best of such alternatives is deduced in order to create a benchmark framework. This framework is then utilised on and promoted as a tool to assist Europe (as represented by the European Patent Office) in examining human embryonic stem cell patent applications. This method suggests a possibility of implementing an institution solution. 5. Ultimately, a question of whether such reformed European patent system can be used as a founding stone for a potential patent reform in Australia and the United States when examining human embryonic stem cells or other morally controversial inventions is surveyed. The author wishes to emphasise that the guiding thought while carrying out this work is to convey the significance of identifying, analysing and clarifying the ethical tensions surrounding patenting human embryonic stem cells and ultimately present a solution that adequately assesses patentability of human embryonic stem cell inventions and related biotechnologies. In answering the key questions above, the Thesis strives to contribute to the broader stem cell debate about how and to which extent ethical and social positions should be integrated into the patenting procedure in pluralistic and morally divided democracies of Europe and subsequently Australia and the United States.
Resumo:
Conserving blodiversity has in recent years become a concern of the global elite because of the commercial potential of the emerging biotechnologies. But much of this blodiversity resides In the Third World tropics which are currently being drained of their biological and mineral wealth. This process goes on because the costs of the resultant degradation are entirely passed on to the poor of the Third World countryside who perforce have to depend on resources gathered or produced with their own labour from their surroundings. The elite have always found a substitute whenever a particular resource, or a particular locality, has been exploited to exhaustion. Indeed, given their record, commercial interests are likely to abandon the new found concern for conservation once they acquire control over adequate levels of genetic resources in ex situ storages. Long term conservation of biodiversity must therefore be attempted through empowering and suitably rewarding people of the Third World countryside whose well being is linked to the sustainable use of biological resources and conservation of the biodiversity in their own localities.