39 resultados para bioprospecting
Resumo:
This Microreview seeks to highlight the molecular diversity present in marine organisms, and illustrate by example some of the challenges encountered in exploring this resource. Marine natural products exhibit an impressive array of structural motifs, many of which are derived from biosynthetic pathways that are uniquely marine, Most importantly some marine metabolites possess noteworthy biological activities, activities that have potential application outside marine ecosystems, such as antibiotics, antiparasitics, anticancer agents etc... The isolation, spectroscopic characterisation and assignment of stereostructures to these unusual metabolites is both challenging and rewarding. Examples featured in this Microreview follow a common theme in that they are all recent accounts of the isolation of natural products from Australian marine sponges, carried out in the laboratories of the author. In addition to presenting brief comments on specific structure elucidation strategies, an effort is made to emphasize techniques for solving stereochemical issues, as well as to speculate on the biosynthetic origins of some of these exotic marine natural products.
Resumo:
A total of 34 yeast isolates were characterized from 4 water samples collected from Kongsfjord at Ny Alseund region of Norwegion Artic during the Indian Artic summer expedition of 2009.They were studied for the effect of tempereture and salt concentration on growth as well as for their ability to produce various hydrolytic enzymes at two different temperatures. Result showed that 5 out of 8 genera were common to all the stations. Cryptococcus was the predominant genera folowed by Trichosporan and Rhodotorula 82% of the yeast isolates were oxidative in nature and except filobasidium all the isolates used nitrate as a nitrogen source for growth. Yeast isolates from all the ststions showed growth at 4 and 20 degree centigarade. These temperatures were chosen as most of the bacterial and yeast isolates showed psychrotrop[hic nature. 94% of the yeast isolates showed growth at 2.0M and lipolytic activity were marginally less than 4.None of the isolates produced amylase enzymes when incubated at 4 and 20. The present study highlights the wide tolerence of the psychrotrophic yeast isolates to temperature and salinity as well as their potential in biotechnology
Resumo:
Ethnopharmacological relevance One of the major drawbacks of using ethnomedicinal data to direct testing of plants which may find pharmaceutical use is that certain plants without bioactivity might be traditionally used. An accepted way of highlighting bioactive plants is to compare usage in different cultures. This approach infers that presumed independent discovery by different cultures provides evidence for bioactivity. Although several studies have made cross-cultural comparisons, they focussed on closely related cultures, where common patterns might be the result of common cultural traditions. The aim of this study was to compare three independent ethnomedicinal floras for which similarities can be more robustly interpreted as independent discoveries, and therefore likely to be indication for efficacy. Materials and methods Data from the literature were compiled about the ethnomedicinal floras for three groups of cultures (Nepal, New Zealand and the Cape of South Africa), selected to minimise historical cultural exchange. Ethnomedicinal applications were divided in 13 categories of use. Regression and binomial analyses were performed at the family level to highlight ethnomedicinal “hot” families. General and condition-specific analyses were carried out. Results from the three regions were compared. Results Several “hot” families (Anacardiaceae, Asteraceae, Convolvulaceae, Clusiaceae, Cucurbitaceae, Euphorbiaceae, Geraniaceae, Lamiaceae, Malvaceae, Rubiaceae, Sapindaceae, Sapotaceae and Solanaceae) were recovered in common in the general analyses. Several families were also found in common under different categories of use. Conclusions Although profound differences are found in the three ethnomedicinal floras, common patterns in ethnomedicinal usage are observed in widely disparate areas of the world with substantially different cultural traditions. As these similarities are likely to stem from independent discoveries, they strongly suggest that underlying bioactivity might be the reason for this convergent usage. The global distribution of prominent usage of families used in common obtained by this study and the wider literature is strong evidence that these families display exceptional potential for discovery of previously overlooked or new medicinal plants and should be placed in high priority in bioscreening studies and conservation schemes.
Resumo:
There is controversy about whether traditional medicine can guide drug discovery, and investment in ethnobotanically led research has fluctuated. One view is that traditionally used plants are not necessarily efficacious and there are no robust methods for distinguishing the ones that are most likely to be bioactive when selecting species for further testing. Here, we reconstruct a genus-level molecular phylogeny representing the 20,000 species found in the floras of three disparate biodiversity hotspots: Nepal, New Zealand and the Cape of South Africa. Borrowing phylogenetic methods from community ecology, we reveal significant clustering of the 1,500 traditionally used species, and provide a direct measure of the relatedness of the three medicinal floras. We demonstrate shared phylogenetic patterns across the floras: related plants from these regions are used to treat medical conditions in the same therapeutic areas. This strongly suggests independent discovery of plant efficacy, an interpretation corroborated by the presence of a significantly greater proportion of known bioactive species in these plant groups than in a random sample. Phylogenetic cross-cultural comparison can focus screening efforts on a subset of traditionally used plants that are richer in bioactive compounds, and could revitalise the use of traditional knowledge in bioprospecting.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Biological diversity and its constituent chemical diversity have served as one of the richest sources of bioprospecting leading to the discovery of some of the most important bioactive molecules for mankind. Despite this excellent record, in the recent past, however, bioprospecting of biological resources has met with little success; there has been a perceptible decline in the discovery of novel bioactive compounds. Several arguments have been proposed to explain the current poor success in bioprospecting. Among them, it has been argued that to bioprospect more biodiversity may not necessarily be productive, considering that chemical and functional diversity might not scale with biological diversity. In this paper, we offer a critique on the current perception of biodiversity and chemodiversity and ask to what extent it is relevant in the context of bioprospecting. First, using simple models, we analyze the relation among biodiversity, chemodiversity and functional redundancies in chemical plans of plants and argue that the biological space for exploration might still be wide open. Second, in the context of future bioprospecting, we argue that brute-force high throughput screening approaches alone are insufficient and cost ineffective in realizing bioprospecting success. Therefore, intelligent or non-random approaches to bioprospecting need to be adopted. We review here few examples of such approaches and show how these could be further developed and used in the future to accelerate the pace of discovery.
Resumo:
Purpose: To Isolate and characterize Actinobacteria with antimicrobial activity from Guaviare River (Colombia). Methods: Water and sediment samples were collected from Guaviare River. Direct plating, heat and CaCO3 methods were used to isolate Actinobacteria. Six bacterial strains were tested using T-Streak method: Escherichia coli ATCC 23724, Staphylococus aureus ATCC 25923, Acinetobacter baumannii ATCC 19606, Bacillus subtilis ATCC 21556, Klebsiella pneumoniae ATCC 700603, Chromobacterium violaceum ATCC 31532. Strains of Fusarium sp. H24, Trichoderma harzianum H5 and Colletotrichum gloeosporioides were tested using Kirby-Bauer method. Isolates with high antimicrobial activity were selected for further taxonomic identification. Results: A total of 374 actinobacteria isolates were obtained. Seven isolates exhibited high antimicrobial activity (p < 0.05) and were confirmed as members of Streptomycetaceae family. Of these, three isolates showed differential phenotypic and genotypic profiles, indicating that they may represent new species. Conclusions: To date, this is the first study of this type in Colombian Orinoquia and indicates that this promising source of Actinobacteria from aquatic sediments with the ability to produce antimicrobial secondary metabolites.
Resumo:
This study evaluated the antifungal action of biomolecules produced from the secondary metabolism of bacterial strains found in the rhizosphere of semi arid plants against human pathogenic Candida albicans. Crude extracts were obtained using ethyl acetate as an organic solvent and the bioactivity was assessed with a bioautography technique. The results showed that bacterial strains, Alcaligenes faecalis MRbS12 and Bacillus cereus MRbS26, had compounds with antifungal bioactivity. The largest inhibition zones for both compounds were located on spots with Rf values below 0.500, indicating that the molecules possibly had polar characteristics. These results suggested that microorganisms found in the environment could have bioprospecting potential.
Resumo:
Tese de Doutoramento em Biologia de Plantas MAP - Bioplant
Resumo:
The objective of this work was to identify growth-promoting bacteria isolated from Agaricus blazei and to evaluate their effect on mushroom mycelial growth and productivity. A total of 56 A. blazei-associated bacterial isolates were obtained from casing soil and identified by 16S rRNA gene sequencing. Bacteria were evaluated as to phosphate-solubilization ability, nitrogen-fixation capability, and secretion of cellulase. Superior isolates were tested for their to effect on A. blazei productivity, micelial growth, and on the contents of the polysaccharide-protein complex and of N, P, K, Ca, and Mg. Bacterial isolates were identified as actinobacteria (60%), firmicutes (20%), and proteobacteria (20%). Among them, ten isolates had phosphate-solubilization ability, eight showed nitrogen-fixation capability, and 12 isolates promoted A. blazei mycelium growth. Bacterial inoculation reduces time till harvest in up to 26 days, increases fresh mushroom yield up to 215%, and increases total polysaccharide-protein complex content twofold when compared to the non-inoculated control. The actinobacteria group is the predominant A. blazei-associated phylum.