866 resultados para biometria ocular


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Avaliou-se 31 cães saudáveis, sem raça definida, sendo 10 machos e 21 fêmeas, com 8 meses a 7 anos de idade e peso de1,5-28 kg. Inicialmente foram mensurados os diâmetros fronto-occiptal (DFO) e bizigomático (DBZ) do crânio com o auxílio de um paquímetro. A ultra-sonografia transpalpebral em modo-B foi realizada para mensurar as estruturas do bulbo ocular, conforme se segue: D1- espessura da córnea; D2- distância entre o ponto central da imagem da córnea e a da cápsula anterior do cristalino (câmara anterior); D3- distância entre o ponto central da imagem da córnea e a da cápsula posterior do cristalino; D4- espessura do cristalino, que corresponde a distância entre a imagem da cápsula anterior e a cápsula posterior do cristalino; D5- diâmetro do cristalino, distância entre as imagens dos pólos do cristalino; D6– área do cristalino; D7- câmara vítrea, distância entre a imagem da cápsula posterior do cristalino e a retina; D8- distância entre a cápsula anterior do cristalino e a retina; D9- distância entre a imagem da córnea e a retina. Com exceção da D4, houve efeito dos DFO e DBZ sobre as medidas das estruturas internas do BO. A análise de regressão linear entre as medidas das estruturas do bulbo ocular e os DFO e DBZ foram significativas para D1, D2, D3, D4, D5, D6, D7, D8 e D9.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study aimed to describe and compare the ultrasonographic alterations in dogs' eyes submitted to facectomy with or without intraocular lens implant (IOL), to assist in the diagnosis of possible alterations related to the surgical procedure and IOL implantation. Nineteen dogs with cataract (21 eyes) were submitted to phacoemulsification and late postoperative evaluation (at five years). The animals were initially submitted to complete ophthalmological exams which preceded the sonogram. Dogs were divided in three groups: (CA) aphakic dogs (n= 11); (PP) pseudophakic dogs with implantation of two IOLs in piggyback (n=5) and (PL) pseudophakic dogs with implantation of a veterinary IOL (n = 5). The ultrasound was carried under the administration of a topic local anesthetic, with a multi frequency linear transducer of 10 MHz. Biometric eye measurements were also performed. The clinical alterations observed were IOL dislocation, retinal detachment, asteroid hyalosis, and vitreous degeneration. Ultrasound examination was an excellent diagnostic tool, as it was possible to confirm and classify these changes. The piggyback implant reduced the measurements between the ciliary body and the vitreous chamber obtained from the ocular biometry when compared to other usual procedures, with no difference between the axial length and the anterior chamber.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Cirurgia Veterinária - FCAV

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de Mestrado em Gestão e Conservação da Natureza.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aberrations affect image quality of the eye away from the line of sight as well as along it. High amounts of lower order aberrations are found in the peripheral visual field and higher order aberrations change away from the centre of the visual field. Peripheral resolution is poorer than that in central vision, but peripheral vision is important for movement and detection tasks (for example driving) which are adversely affected by poor peripheral image quality. Any physiological process or intervention that affects axial image quality will affect peripheral image quality as well. The aim of this study was to investigate the effects of accommodation, myopia, age, and refractive interventions of orthokeratology, laser in situ keratomileusis and intraocular lens implantation on the peripheral aberrations of the eye. This is the first systematic investigation of peripheral aberrations in a variety of subject groups. Peripheral aberrations can be measured either by rotating a measuring instrument relative to the eye or rotating the eye relative to the instrument. I used the latter as it is much easier to do. To rule out effects of eye rotation on peripheral aberrations, I investigated the effects of eye rotation on axial and peripheral cycloplegic refraction using an open field autorefractor. For axial refraction, the subjects fixated at a target straight ahead, while their heads were rotated by ±30º with a compensatory eye rotation to view the target. For peripheral refraction, the subjects rotated their eyes to fixate on targets out to ±34° along the horizontal visual field, followed by measurements in which they rotated their heads such that the eyes stayed in the primary position relative to the head while fixating at the peripheral targets. Oblique viewing did not affect axial or peripheral refraction. Therefore it is not critical, within the range of viewing angles studied, if axial and peripheral refractions are measured with rotation of the eye relative to the instrument or rotation of the instrument relative to the eye. Peripheral aberrations were measured using a commercial Hartmann-Shack aberrometer. A number of hardware and software changes were made. The 1.4 mm range limiting aperture was replaced by a larger aperture (2.5 mm) to ensure all the light from peripheral parts of the pupil reached the instrument detector even when aberrations were high such as those occur in peripheral vision. The power of the super luminescent diode source was increased to improve detection of spots passing through the peripheral pupil. A beam splitter was placed between the subjects and the aberrometer, through which they viewed an array of targets on a wall or projected on a screen in a 6 row x 7 column matrix of points covering a visual field of 42 x 32. In peripheral vision, the pupil of the eye appears elliptical rather than circular; data were analysed off-line using custom software to determine peripheral aberrations. All analyses in the study were conducted for 5.0 mm pupils. Influence of accommodation on peripheral aberrations was investigated in young emmetropic subjects by presenting fixation targets at 25 cm and 3 m (4.0 D and 0.3 D accommodative demands, respectively). Increase in accommodation did not affect the patterns of any aberrations across the field, but there was overall negative shift in spherical aberration across the visual field of 0.10 ± 0.01m. Subsequent studies were conducted with the targets at a 1.2 m distance. Young emmetropes, young myopes and older emmetropes exhibited similar patterns of astigmatism and coma across the visual field. However, the rate of change of coma across the field was higher in young myopes than young emmetropes and was highest in older emmetropes amongst the three groups. Spherical aberration showed an overall decrease in myopes and increase in older emmetropes across the field, as compared to young emmetropes. Orthokeratology, spherical IOL implantation and LASIK altered peripheral higher order aberrations considerably, especially spherical aberration. Spherical IOL implantation resulted in an overall increase in spherical aberration across the field. Orthokeratology and LASIK reversed the direction of change in coma across the field. Orthokeratology corrected peripheral relative hypermetropia through correcting myopia in the central visual field. Theoretical ray tracing demonstrated that changes in aberrations due to orthokeratology and LASIK can be explained by the induced changes in radius of curvature and asphericity of the cornea. This investigation has shown that peripheral aberrations can be measured with reasonable accuracy with eye rotation relative to the instrument. Peripheral aberrations are affected by accommodation, myopia, age, orthokeratology, spherical intraocular lens implantation and laser in situ keratomileusis. These factors affect the magnitudes and patterns of most aberrations considerably (especially coma and spherical aberration) across the studied visual field. The changes in aberrations across the field may influence peripheral detection and motion perception. However, further research is required to investigate how the changes in aberrations influence peripheral detection and motion perception and consequently peripheral vision task performance.