124 resultados para biologis-kemiallinen puhdistus
Resumo:
Työssä tutkitaan haja-asutusalueille soveltuvia, maksimissaan 3m3 jätevettä vuorokaudessa puhdistavien puhdistamojen menetelmiä ja laitteita.
Resumo:
Ultrasuodatus on tehokas entsyymiliuosten konsentrointi- ja puhdistusmenetelmä. Prosessin ongelmana on kuitenkin kalvojen likaantumisesta johtuva suodatuksen aikainen vuon pienentyminen ja kalvojen hankala puhdistaminen. Oikeilla kalvovalinnoilla ja optimaalisilla pesustrategioilla voidaan suodatus- ja pesuaikoja lyhentää ja nain parantaa suodatusprosessin tehokkuutta ja tuotteen laatua. Työn kirjallisessa osassa on käsitelty entsyymiliuosten ja polymeerikalvojen suodatusprosessiin vaikuttavia ominaisuuksia. Työssä on esitelty myös pesuaineiden ja pesukemikaalien ominaisuuksia sekä pesuprosessiin vaikuttavia tekijöitä. Työn kokeellinen osa koostui kahdesta osasta. Työn ensimmäisessä osassa etsittiin entsyymiliuosten ultrasuodatusprosessiin sopivaa kalvoa vertailemalla kalvojen permeabiliteetteja, hydrofiilisyytta, varausta ja peseytyvyyttä. Suodatuksissa käytettiin kahta Roal Oy:n tuottamaa entsyymiliuosta ja suodatukset tehtiin DSS Labstak M20-laitteistolla. Työn toisen osan tarkoituksena oli etsiä entsyymiliuosten suodatuksessa käytettävien kalvojen likaantumisen syyt sekä tehokas puhdistusaine kalvojen pesuun. Tehokasta pesuainetta etsittiin liotuskokeilla ja laboratoriomittakaavan poikkivirtauslaitteistolla. Analysointeja tehtiin muun muassa FTIR- spektroskoopilla, vuomittauksilla, pyyhkäisyelektronimikroskoopilla ja kontaktikulmamittauksilla. Entsyymiliuosten suodatuksiin sopivan kalvon etsinnässä testattujen kalvojen välillä oli suuria eroja niin permeabiliteeteissa kuin likaantumisessa ja puhdistumisessa, mutta mikään kalvoista ei erottunut ylivoimaisesti parhaaksi. Pesuaineista kaupalliset membraanien puhdistukseen tarkoitetut emäksiset pesuaineet osoittautuivat tehokkaimmiksi lian poistajiksi.
Resumo:
Tässä diplomityössä tutkittiin nanosuodatuskalvojen puhdistusta ja kestävyyttä alkalipesuissa. Työn kirjallisuusosassa käsitellään kalvojen likaantumista ja eri puhdistusmenetelmiä, sekä vertaillaan kolmen nanosuodatuskalvon erotusominaisuuksia. Kokeellisessa osassa tutkittiin emäksisten pesukemikaalien vaikutusta kirjallisuusosassa esitettyihin kalvoihin. Käytetyt suodatuskalvot olivat Dow FilmTecTM NF-270, GE Osmonics Desal-5 DL ja Trisep XN45. Kalvojen puhdistukseen käytettiin Ecolabin P3-ultasil 110 ja 112 alkalipesukemikaaleja. Suodatuskokeet tehtiin laboratoriomittakaavan tasokalvojen suodatinlaitteistolla. Alkalikäsittelyitä tehtiin sekä liottamalla kalvoja säilytysastiassa että altistamalla näitä virtauksen ja paineen alaisuudessa. Vaihdettuja muuttujia oliat: pesuainekonsentraatio, lämpötila ja vaikutusaika. Kalvoissa tapahtuneita muutoksia arvioitiin mittaamalla permeabiliteettia sekä magnesiumsulfaatti- ja glukoosiretentioita. Suodatuslämpötilan nostaminen kasvatti lineaarisesti permeabiliteettia ja vastaavasti laski lineaarisesti retentiota. Kalvojen välillä ei ollut eroja permeabiliteettien lämpötilariippuvuuksissa. DL:n retentio laski vähiten lämpötilaa nostettaessa. Liotuskokeiden perusteella kestävät DL- ja NF-270-kalvot noin 1 % P3-ultrasil 110 liuoksia, sekä XN-kalvo 1,2–1,5 %:sia liuoksia, kun lämpötilana on 44 ºC ja vaikutusaikana 50 vrk. Käytettyjen pesukemikaalien välillä ei havaittu eroja. Pienen paineen ja virtauksen alla suoritetuissa käsittelyissä havaittiin alkalihajoamisen noudattavan likimain ensimmäisen kertaluvun reaktiokinetiikkaa ja käyttäytyvän likimain Arrheniuksen yhtälön ennustamalla tavalla. Myös näissä kokeissa XN45 osoittautui kestävimmäksi. Retentioiden heikkenemistä ei pystytty luotettavasti ennustamaan permeabiliteetin perusteella. Työssä osoitettiin että kalvojen muutoksia alkalipesuissa ajan funktiona voidaan ennustaa ja näin teollisuudessa voidaan ennakoida kalvojen vaihtotarvetta.
Resumo:
Torque teno -virus (TTV, TT-virus) on uusimpia löydettyjä ihmisviruksia ja se on erittäin yleinen täysin terveissäkin ihmisissä. Sitä kantaa ihmisistä yli 80 % kantajan maantieteellisestä sijainnista tai iästä riippumatta. Vielä ei osata sanoa, aiheuttaako torque teno -virus tiettyjä tauteja vai onko se osa normaaliflooraa, mikä olisi viruksista puhuttaessa täysin uutta. Helsingin yliopiston virologian laitoksella Haartman instituutissa toimiva professori Klaus Hedmanin tutkimusryhmä on kehitellyt sopivia menetelmiä TT-viruksen proteiinien tuottoon ja puhdistamiseen. Tämän opinnäytetyön tarkoituksena oli optimoida näitä menetelmiä. Proteiinien tuottoon ja puhdistukseen valittiin mukaan TTV:n genomin koodittamista kuudesta proteiinista oletettavasti kapsidiproteiinina toimiva ORF1-Arg (ORF1-proteiini, josta on poistettu arginiinirikas alue) ja ei-rakenneproteiinina toimiva ORF2/2. Proteiinit tuotettiin Sf9- ja High Five -hyönteissoluissa, ja vektorina ekspressoinnissa oli baculovirus. Puhdistukseen käytettiin agaroosigeelielektroforeesia (AGE) ja vaihtoehtoisesti histidiiniaffiniteettikromatografiaa. Proteiinien tuotossa optimoitiin solujen infektiossa käytettävän baculoviruksen määrää ja selvitettiin, että proteiineja saatiin tuotettua suunnilleen yhtä paljon sekä Sf9- että High Five -soluissa. AGE-menetelmällä saatiin puhdistettua ORF2/2-proteiinia ja menetelmää yritettiin kehitellä niin, että saataisiin puhdistuksen yhteydessä enemmän proteiineja talteen. Histidiiniaffiniteettipuhdistusta ei ollut aikaisemmin käytetty hyönteissoluissa tuotettujen TTV:n proteiinien puhdistukseen. Menetelmällä saatiin tuotettua ORF1-proteiinia, mutta puhdistusmenetelmä vaatii vielä kehittelyä. Tämän opinnäytetyön avulla saatiin menetelmien kehitystyötä eteenpäin, ja havaittiin ongelmakohtia, joihin tulee kiinnittää jatkossa huomiota. Histidiiniaffiniteettipuhdistusta ei vielä saatu toimivaksi ja AGE:n kehittelyä täytyy myös vielä jatkaa. TTV:n puhdistettuja proteiineja tullaan käyttämään apuna määritettäessä TTV:n mahdollista patogeenisuutta ja biologista merkitystä. Proteiinien avulla kehitellään laboratoriomenetelmiä TTV:n virusinfektioiden ja sairauksien löytämiseen ja diagnosointiin mm. tuottamalla proteiinien avulla spesifisiä vasta-aineita TTV:tä vastaan. Opinnäytetyössä puhdistettuja ORF2/2-proteiineja käytettiin tutkimusryhmässä TTV-spesifisen T-soluimmuniteetin tutkimiseen.
Resumo:
Tämän diplomityön oleellisempana tavoitteena oli tutkia ioninvaihtohartsien pitkäaikaista toiminnallista lämpötilakestävyyttä kirjallisuustutkimuksin ja kuormituskokein. Lisaksi työssä optimoitiin taloudellisesti ja teknisesti paras kytkentävaihtoehto soodakattilan lauhteenpuhdistuslaitokselle. Tässä diplomityössä selvitettiin myös soodakattilan ulospuhallusveden sisältämien veden jälkiannostelukemikaalien ja epäpuhtauksien vaikutusta ioninvaihtohartsien vanhenemiseen.; Ioninvaihtohartsien lämpötilakestävyyteen liittyvät koeajot suoritettiin Stora Enso Laminating Papers Oy Kotkan tehtaalla. Koeajoja varten oli erikseen suunniteltu koeajolaitteisto, jossa lauhdenäytettä puhdistettiin patruunasuotimella ja sekavaihtimella. Sekavaihtimessa käytettiin vahvoja anioni- ja kationihartseja. Koeajoja oli yhteensä neljäkappaletta ja niissä tutkittiin hartsien lämpötilakestävyyttä ja anionihartsin silikaatti-vuodon riippuvuutta lämpötilasta. Lämpötilakestävyyskoeajoissa käytetyt hartsit lähetettiin Rohm and Haasille analysoitavaksi. Lopulta koeajojen tuloksia verrattiin kirjallisuudessa esitettyihin aikaisempiin tutkimuksiin. Lauhteenpuhdistuslaitoksen kytkentävaihtoehtojen optimoinnissa käytettiin apuna Kotkan ja UPM-Kymmene Oyj Pietarsaaren tehtaiden kokemuksia. Kytkentävaihtoehtojen energiataseet laskettiin kuudelle eri laitokselle, joiden syöttöveden virtaukset olivat 37 -180 kg/s. Lisaksi selvitettiin kytkentävaihtoehtojen investointikustannukset ja kertakäyttöhartsien vuotuiset kustannukset laitokselle, jossa syöttöveden virtaus oli 67 kg/s. Ulospuhalluksen talteenottojärjestelmän energiataseet laskettiin kuudelle eri laitokselle, joiden syöttöveden virtaukset olivat 37 - 180 kg/s. Laskelmien lähtökohtana käytettiin kunkin soodakattilan ulospuhallusveden määriä, jotka selvitettiin tehdasvierailujen yhteydessä. Ulospuhallusveden epäpuhtauksien ja jälkiannostelukemikaalien pitoisuudet arvioitiin kattilaveden perusteella. Aikaisempien kokemusten perusteella arvioitiin, että ulospuhallusvesi johdettaisiin lisäveden valmistukseen ennen suolanpoistosarjoja. loninvaihtohartsien kuormituskokeiden ja kirjallisuustutkimusten perusteella oli selkeästi nähtävissä, että etenkin anionihartsin kapasiteetti heikkeni nopeasti lämpötilan ollessa yli 60 °C. Kationihartsin suolanpoistolle kriittinen lämpötilaraja on 100 °C.Lisäksi yli 60 °C:ssa anionihartsi ei pysty poistamaan silikaattia lauhteesta. Seuraavaksi on esitelty lauhteenpuhdistuslaitoksen optimikytkentävaihtoehdot sekä vanhoille että uusille laitoksille. Vanhalle laitokselle, jossa lauhteet on puhdistettu aikaisemmin mekaanisella suotimella ja lisäveden puhdistuksessa on käytetty sekavaihdinta, paras kytkentävaihto on erilliset sekavaihtimet lauhteelle ja lisävedelle. Uudelle ja vanhalle laitokselle, jossa lauhteet on puhdistettu aikaisemmin mekaanisella suotimella ja lisäveden puhdistuksessa ei ole käytetty sekavaihdinta, paras kytkentävaihto on yhteiset sekavaihtimet lauhteelle ja lisävedelle. Lauhteen puhdistuksessa käytetyt sekavaihtimen toimintalämpötila on 45 °C molemmissa kytkentävaihtoehdoissa. Kertakäyttöhartsien käyttö osoittautui suuressa mittakaavassa kannattamattomaksi. Tämä asia tarvinnee kuitenkin jatkotutkimuksia. Ulospuhallusveden talteenotolla saadaan energiasäästöä 6-53 k¤/a riippuenlaitoksesta. Etenkin soodakattilalaitoksissa, joissa soodakattila ja vedenkäsittelylaitos sijaitsevat lähellä toisiaan, kannattaa ulospuhallusvesi johtaa lisäveden valmistukseen. Jos edellä mainittujen laitosten etäisyydet kasvavat, saattavat ulospuhallusjärjestelmän investointi-kustannukset nousta kohtuuttoman suureksi. Tämä työ osoitti myös, että ulospuhallusveden epäpuhtauksilla ei ole merkittävää vaikutusta kemiallisesti puhdistetun veden laatuun ennen suolanpoistolaitosta ja ioninvaihtohartsien vanhenemiseen.
Resumo:
Rasvaisten jätevesien puhdistus on sitä tuottaville yrityksille kallista ja hankalaa. Nykyisten päästövaatimusten saavuttaminen on perinteisillä jätevedenkäsittelymenetelmillä vaikeaa tai lähes mahdotonta, riippuen käsiteltävän jäteveden ominaisuuksista. Rasvaisen jäteveden käsittelyssä on käytetty mm. laskeutusta, flotaatiota, hydrosykloneja, pisaroitusta, suodatusta sekä biologista käsittelyä. Lisäksi happohydrolyysiä voidaan soveltaa edellä mainittujen menetelmien esikäsittelynä. Useita näitä erotusmenetelmiä voidaan myös tehostaa kemikaalien lisäyksellä. Työn kirjallisuusosassa on käsitelty rasvaisten jätevesien ja emulsioiden kalvosuodatusta ja kalvojen käyttöä pisaroituselementtinä. Tavanomaisessa kalvosuodatuksessa tarkoituksena on erottaa kalvoa läpäisemätön rasvajae ja permeoituva vesijae toisistaan, kun taas pisaroittamisen tarkoituksena on saada dispergoituneen faasin pisarakoko kasvamaan joko kalvon pinnalla tai sen huokosissa. Pisarakoon kasvaessa emulsion stabiilisuus heikkenee ja faasit voidaan helpommin erottaa toisistaan. Työn kokeellisessa osassa tavoitteena oli tutkia kalvosuodatuksen ja erilaisten kalvojen toimivuutta esteröintilaitoksen rasvaisten jätevesien käsittelyssä. Tutkimuksessa käytettiin MW- (GE Osmonics), C30F- (Nadir Filtration), Teflon Typar- (Tetratex) sekä JX-kalvoa (Osmonics Desal). Haastetta työhön syntyi tutkittujen jätevesien ominaisuuksien suuresta vaihtelusta sitä tuottavan laitoksen panostyylisestä toiminnasta johtuen. Lisäksi tutkittiin, onko syöttöliuoksen pH-säädöllä ja laskeutuksella ennen suodatusta merkittävää etua itse kalvosuodatusprosessiin. Kalvotekniikkaa voidaan tämän tutkimuksen perusteella soveltaa myös esteröintilaitoksen rasvaisten jätevesien suodatukseen, ja erityistä etua saadaan jäteveden pH-säädöllä (pH 3) ja laskeutuksella ennen varsinaista suodatusta. Tällaiseen käsittelyyn soveltuu tutkituista kalvoista parhaiten hydrofiilinen regeneroidusta selluloosasta valmistettu C30F-kalvo, jonka etuna on vähäinen foulaantuminen muihin tutkittuihin kalvoihin verrattuna.
Resumo:
Tässä diplomityössä on selvitetty hiilestä, jätteestä tai biopolttoaineesta kaasutetun kaasun märkä- ja kuivapuhdistusta. Kaasutuskaasun puhdistuksella voidaan likainen ja jopa ongelmallinen aines muuttaa tai puhdistaa sellaiseksi ympäristökelpoiseksi polttoaineeksi, että sitä voidaan käyttää nykyisissä kulutuskohteissa ongelmitta. Lisäkannustusta kaasutuskaasun puhdistus saa uusista EU-direktiiveistä, jotka tulevat rajoittamaan jätteiden läjittämistä kaatopaikoille. Loppusijoitukseen meneviä jätevirtoja voidaan energiakäytöllä pienentää huomattavasti.Työ on tehty PVO-Engineering Oy:n voimalaitostekniikan osastolle kevään 2001 aikana. Työn tavoitteena oli kasvattaa yrityksen tietomäärää kaasutuskaasun puhdistuksen osalta. Lisäksi pyrittiin selvittämään uuden keraamisen pussisuodatinmateriaalin käyttöä kaasutuskaasun kuumakuivasuodatuksessa. Työn ensimmäisessä osassa esitetään kaasutuskaasun koostumuksen ja syntymisen lisäksi tämän työn lähtökohdat ja tavoitteet. Toisessa osassa selvitetään kaasulle asetettavia vaatimuksia eri käyttötapojen mukaan. Kolmannessa ja neljännessä osassa selvitetään puhdistettavien komponenttien käyttäytymistä ja sopivia puhdistusmenetelmiä.Kaasutuskaasun puhdistustekniikka vaihtelee paljonkin riippuen kaasun käyttökohteesta. Eroja syntyy käyttökohteen asetettamista vaatimuksista polttoaineelle, kaasutettavan polttoaineen koostumuksesta ja laadun vaihtelusta. Puhdistuksessa keskitytään kloori -, rikki -, typpi - ja metalliyhdisteiden poistamiseen kaasuvirrasta. Erotuskyvyllä arvioituna eri puhdistusmenetelmistä tehokkaimpia ovat pesurisähkösuodatinyhdistelmät. Niiden suuret jätemäärät ovat kuitenkin iso ongelma. Kuumakuivapuhdistuksessa pyritään kehittämään menetelmä, jossa syntyvät jätemäärät ovat pieniä ja puhdistustulos on riittävä. Puhdistuksen apukeinona käytetään usein erilaisia katalyyttejä. Tunnetuimpia ovat erilaiset kalsiumpohjaiset materiaalit ja mineraalit. Katalyyteillä voidaan tehostaa tarpeellisia kemiallisia reaktioita puhdistusprosessissa. Kaikki puhdistukseen liittyvät ongelmat ovat kooltaan niin suuria, että niiden ratkaisemiseksi on tulevaisuudessa tehtävä lujasti töitä. Markkinanäkymät toimivalle puhdistustekniikalle ovat nykymaailmassa hyvät. Niinpä tuotekehitykseen laitetut panokset voivat tulevaisuudessa olla yritykselle kullan arvoisia.
Resumo:
Tämä opinnäytetyö tehtiin Borealis Polymers Oy:n Porvoon tuotantolaitokselle. Työn ta-voitteena oli kehittää Borealiksen fenolin tuotantoprosessiin kiertoasetonin aldehydien poisto ratkaisu siltä varalta, että uuden hajotusteknologian käyttöön oton jälkeen ensisijai-nen aldehydien poistoratkaisu osoittautuisi riittämättömäksi ja asetonituotteessa ilmenisi spesifikaatio-ongelmia. Tutkimuksen kokeellinen osuus suoritettiin pienellä paineen kestävällä reaktorilla, jossa eri parametreja olivat: paine, lämpötila, reagenssit ja konsentraatiot ja reaktioaika. Tavoittee-na oli käyttää saatuja tutkimustuloksia asetonituotteen pitämisessä spesifikaatioiden mu-kaisena erityisesti aldehydien suhteen. Tutkimuksen suurimpina ongelmina olivat tuotantoprosessin monimutkaisuus, näytemat-riisin kompleksisuus, tuotehävikki, uusien epäpuhtauksien syntyminen ja poistettujen epä-puhtauksien stabiilisuus. Matriisin kompleksisuus ja reaktioista johtuvat koostumuksen vaihtelut vaikeuttivat analyysejä ja matriisin emäksisyys aiheutti analyysilaitteiston huolto-välin kaventumista. Näytteiden analysointi tapahtui Hewlett Packard 5890-kaasukromatografilla käyttäen FID-detektoria ja J&W Scientific/Agilent DB Wax-kapillaarikolonnia. Tutkimuksen tavoitteet saavutettiin ja tislauskolonnista valmistetun reaktorin osoitettiin olevan toimiva ratkaisu aldehydien poistamiseksi uudessa fenolin tuotantoprosessissa. Samalla tuoteasetonin laatua parannettiin ja aldehydipuhdistuksen turvamarginaalia kas-vatettiin. Tutkimustulosten perusteella tehtiin reaktorinkäytöstä vastaavalle operaattorille käyttöohje.
Resumo:
Kirjallisuusarvostelu
Resumo:
kuv., 21 x 14 cm
Resumo:
kuv., 14 x 11 cm
Resumo:
Lignoselluloosasta koostuvasta biomassasta valmistetaan hydrolysoimalla sokereita, jotka jatkojalostetaan fermentoimalla bioetanoliksi. Bioetanolia käytetään fossiilisten polttoaineiden korvaajana esimerkiksi ajoneuvoissa. Bioetanolin valmistuksessa pyritään mahdollisimman hyvään saantoon, jotta sen valmistus olisi taloudellisesti kannattavaa. Hydrolyysin aikana syntyy sokerien lisäksi orgaanisia happoja, furaanin johdannaisia sekä fenolisia yhdisteitä. Yleisimpiä syntyviä yhdisteitä ovat muun muassa etikkahappo, furfuraali ja hydroksimetyylifurfuraali. Nämä yhdisteet haittaavat sokerien fermentointiprosessia ja pienentävät etanolin saantoa. Fermentointiprosessia haittaavien yhdisteiden poistoon hydrolysaattiliuoksesta voidaan käyttää esimerkiksi haihdutusta, membraanierotusta, adsorptiota, saostusta, sekä uuttoa. Tämän työn tarkoituksena oli tutkia leikkaussekoittimen soveltuvuutta biomassahydrolysaatin epäpuhtauksien erotukseen. Lisäksi kirjallisuusosassa on esitetty hydrolysointiprosessissa syntyviä haitta-aineita ja niiden erotusmenetelmiä.
Resumo:
Tämä kandidaatintyö jakaantuu teoriaosuuteen ja kokeelliseen osaan. Teoriaosuudessa käsitellään puun kemiallista koostumusta, jossa keskitytään erityisesti puun uuteaineisiin. Puun uuteaineista käsitellään erityisesti hartsihappoja, koska ne ovat taloudellisesti arvokkaita yhdisteitä. Teoriaosuudessa esitellään puun uuteaineille eri analyysimenetelmiä kaasu- ja nestekromatografialla sekä kapillaarielektroforeesilla. Analyysimenetelmät ovat koottu tieteisartikkeleista, joissa on tutkittu ja analysoitu puun uuteaineita. Työn kokeellisessa osuudessa analyysilaitteeksi valittiin kapillaarielektroforeesi (CE). Tavoitteena oli löytää menetelmä, jolla voisi analysoida puun uuteaineista hartsi- ja rasvahappoja. Kapillaarielektroforeesille testattiin viittä erilaista menetelmää. Referenssinäytteinä työssä käytettiin oleiinihappoa ja abietiinihappoa. Yhdellä testatuista menetelmistä saatiin analysoitua oleiinihappoa referenssinäytteistä, mutta mahdollisesti myös abietiinihappoa. Tässä menetelmässä CE:n puskuriliuoksena käytettiin 50 mM boraattia + 100 mM natriumlauryylisulfaattia. Menetelmässä näytteen injektioaika oli 10 sekuntia ja CE:n sähköjännite oli 25 kV. Menetelmä oli toimiva 1000 mg/L liuoksilla, joiden pH oli nostettu 9-10 natriumhydroksidilla. Menetelmän haittapuolena on se, että alle 200 mg/L:n kantaliuoksilla CE:llä ei voitu analysoida oleiini- ja abietiinihappoa. Menetelmä ei siis sovellu esimerkiksi sellaisten näytteiden analysointiin, jossa oleiini- ja abietiinihappo pitoisuudet ovat hyvin pienet (alle 200 mg/L).