995 resultados para biological attachment devices
Resumo:
Open Access funded by European Research Council Acknowledgements RB thanks GRADUS, Faculty 8.4. Natural Sciences, of Saarland University for partially funding his research visit to the University of California, Santa Barbara. RB would also thank to Dr. S. Khaderi for his help in setting up the model. He also thanks Dr. R. Hensel and Dr. N. Guimard for fruitful discussions and for their continuous support. EA acknowledges funding from the European Research Council under the European Union's Seventh Framework Program (FP/2007-2013)/ERC Advanced Grant no. 340929.
Resumo:
Two-hybrid methods have augmented the classical genetic techniques biologists use to assign function to genes. Here, we describe construction of a two-bait interaction trap that uses yeast cells to register more complex protein relationships than those detected in existing two-hybrid systems. We show that such cells can identify bridge or connecting proteins and peptide aptamers that discriminate between closely related allelic variants. The protein relationships detected by these cells are analogous to classical genetic relationships, but lend themselves to systematic application to the products of entire genomes and combinatorial libraries. We show that, by performing logical operations on the phenotypic outputs of these complex cells and existing two-hybrid cells, we can make inferences about the topology and order of protein interactions. Finally, we show that cells that register such relationships can perform logical operations on protein inputs. Thus these cells will be useful for analysis of gene and allele function, and may also define a path for construction of biological computational devices.
Resumo:
Silk fibroin has been widely explored for many biomedical applications, due to its biocompatibility and biodegradability. Sterilization is a fundamental step in biomaterials processing and it must not jeopardize the functionality of medical devices. The aim of this study was to analyze the influence of different sterilization methods in the physical, chemical, and biological characteristics of dense and porous silk fibroin membranes. Silk fibroin membranes were treated by several procedures: immersion in 70% ethanol solution, ultraviolet radiation, autoclave, ethylene oxide, and gamma radiation, and were analyzed by scanning electron microscopy, Fourier-transformed infrared spectroscopy (FTIR), X-ray diffraction, tensile strength and in vitro cytotoxicity to Chinese hamster ovary cells. The results indicated that the sterilization methods did not cause perceivable morphological changes in the membranes and the membranes were not toxic to cells. The sterilization methods that used organic solvent or an increased humidity and/or temperature (70% ethanol, autoclave, and ethylene oxide) increased the silk II content in the membranes: the dense membranes became more brittle, while the porous membranes showed increased strength at break. Membranes that underwent sterilization by UV and gamma radiation presented properties similar to the nonsterilized membranes, mainly for tensile strength and FTIR results.
Resumo:
Paper has become increasingly recognized as a very interesting substrate for the construction of microfluidic devices, with potential application in a variety of areas, including health diagnosis, environmental monitoring, immunoassays and food safety. The aim of this review is to present a short history of analytical systems constructed from paper, summarize the main advantages and disadvantages of fabrication techniques, exploit alternative methods of detection such as colorimetric, electrochemical, photoelectrochemical, chemiluminescence and electrochemiluminescence, as well as to take a closer look at the novel achievements in the field of bioanalysis published during the last 2 years. Finally, the future trends for production of such devices are discussed.
Resumo:
The actions of thyroid hormone (TH) on pancreatic beta cells have not been thoroughly explored, with current knowledge being limited to the modulation of insulin secretion in response to glucose, and beta cell viability by regulation of pro-mitotic and pro-apoptotic factors. Therefore, the effects of TH on proinsulin gene expression are not known. This led us to measure: a) proinsulin mRNA expression, b) proinsulin transcripts and eEF1A protein binding to the actin cytoskeleton, c) actin cytoskeleton arrangement, and d) proinsulin mRNA poly(A) tail length modulation in INS-1E cells cultured in different media containing: i) normal fetal bovine serum - FBS (control); ii) normal FBS plus 1 µM or 10 nM T3, for 12 h, and iii) FBS depleted of TH for 24 h (Tx). A decrease in proinsulin mRNA content and attachment to the cytoskeleton were observed in hypothyroid (Tx) beta cells. The amount of eEF1A protein anchored to the cytoskeleton was also reduced in hypothyroidism, and it is worth mentioning that eEF1A is essential to attach transcripts to the cytoskeleton, which might modulate their stability and rate of translation. Proinsulin poly(A) tail length and cytoskeleton arrangement remained unchanged in hypothyroidism. T3 treatment of control cells for 12 h did not induce any changes in the parameters studied. The data indicate that TH is important for proinsulin mRNA expression and translation, since its total amount and attachment to the cytoskeleton are decreased in hypothyroid beta cells, providing evidence that effects of TH on carbohydrate metabolism also include the control of proinsulin gene expression.
Resumo:
Ethylene oxide (EO) is used to sterilize Oxygenator and Tubing applied to heart surgery. Residual levels of EO and its derivatives, ethylene chlorohydrin (ECH) and ethylene glycol (EG), may be hazardous to the patients. Therefore, it must be removed by the aeration process. This study aimed to estimate the minimum aeration time for these devices to attain safe limits for use (avoiding excessive aeration time) and to evaluate the Green Fluorescent Protein (GFP) as a biosensor capable of best indicating the distribution and penetration of EO gas throughout the sterilization chamber. Sterilization cycles of 2, 4, and 8 h were monitored by Bacillus atrophaeus ATCC 9372 as a biological indicator (131) and by the GFP. Residual levels of EO, ECH, and EG were determined by gas chromatography (GC), and the residual dissipation was studied. Safe limits were reached right after the sterilization process for Oxygenator and after 204 h of aeration for Tubing. In the 2 h cycle, the GFP concentration decreased from 4.8 (+/- 3.2)% to 7.5 (+/- 2.5)%. For the 4 h cycle, the GFP concentration decreased from 17.4 (+/- 3.0)% to 21.5 (+/- 6.8)%, and in the 8 h cycle, it decreased from 22.5 (+/- 3.2)% to 23.9 (+/- 3.9)%. This finding showed the potentiality for GFP applications as an EO biosensor. (C) 2009 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 9113: 626-630, 2009
Resumo:
We introduce biomimetic in silico devices, and means for validation along with methods for testing and refining them. The devices are constructed from adaptable software components designed to map logically to biological components at multiple levels of resolution. In this report we focus on the liver; the goal is to validate components that mimic features of the lobule (the hepatic primary functional unit) and dynamic aspects of liver behavior, structure, and function. An assembly of lobule-mimetic devices represents an in silico liver. We validate against outflow profiles for sucrose administered as a bolus to isolated, perfused rat livers. Acceptable in silico profiles are experimentally indistinguishable from those of the in situ referent. This new technology is intended to provide powerful Dew tools for challenging our understanding of how biological functional units function in vivo.
Resumo:
An increased risk of early pregnancy loss in women briefly exposed to high levels of ambient particulate matter during the preconceptional period was recently observed. The effects of this exposure on early embryo development are unknown. This study was designed to assess the dose-response and biological effects of diesel exhaust particles (DEP) on in vitro embryo development using the in vitro fertilization (IVF) mouse model. Zygotes obtained from superovulated mice after IVF were randomly cultured in different DEP concentrations (0, 0.2, 2, and 20 mu g/cm(2)) for 5 days and observed for their capacity to attach and develop on a fibronectin matrix until day 8. Main outcome measures included blastocyst rates 96 and 120 h after insemination, hatching discriminatory score, total cell count, proportion of cell allocation to inner cell mass (ICM) and trophectoderm (TE), ICM morphology, attachment rate and outgrowth area, apoptosis and necrosis rates, and Oct-4 and Cdx-2 expression. Multivariate analysis showed a negative dose-dependent effect on early embryo development and hatching process, blastocyst cell allocation, and ICM morphology. Although blastocyst attachment and outgrowth were not affected by DEP, a significant impairment of ICM integrity was observed in day 8 blastocysts. Cell death through apoptosis was significantly higher after DEP exposure. Oct-4 expression and the Oct-4/Cdx-2 ratio were significantly decreased in day 5 blastocysts irrespective of DEP concentration. Results suggest that DEP appear to play an important role in disrupting cell lineage segregation and ICM morphological integrity even at lower concentrations, compromising future growth and viability of the blastocyst.
Resumo:
Poly(L-lactic acid) (PLA) is a polymer of great technological interest, whose excellent mechanical properties, thermal plasticity and bioresorbability render it potentially useful for environmental applications, as a biodegradable plastic and as a biocompatible material in biomedicine. The interactions between an implant material surface and host cells play central roles in the integration, biological performance and clinical success of implanted biomedical devices. Osteoblasts from human alveolar bone were chosen to investigate the cell behaviour when in contact with PLA discs. Cell morphology and adhesion through osteopontin (OPN) and fibronectin (FN) expression were evaluated in the initial osteogenesis, as well as cell proliferation, alkaline phosphatase activity and bone nodule formation. It was shown that the polymer favoured cell attachment. Cell proliferation increased until 21 days but in a smaller rate when compared to the control group. On the other hand, ALP activity and bone mineralization were not enhanced by the polymer. It is suggested that this polymer favours cell adhesion in the early osteogenesis in vitro, but it does not enhance differentiation and mineralization. (C) Koninklijke Brill NV, Leiden, 2009
Resumo:
Objective The purpose of this study was to evaluate the retention force of an O-ring attachment system in different inclinations to the ideal path of insertion, using devices to compensate angulations. Material and methods Two implants were inserted into an aluminum base, and ball attachments were screwed to implants. Cylinders with O-rings were placed on ball attachments and connected to the test device using positioners to compensate implant angulations (0 degrees, 7 degrees, and 14 degrees). Plexiglass bases were used to simulate implant angulations. The base and the test device were positioned in a testing apparatus, which simulated insertion/removal of an overdenture. A total of 2900 cycles, simulating 2 years of overdenture use, were performed and 36 O-rings were tested. The force required for each cycle was recorded with computer software. Longitudinal sections of ball attachment-positioner-cylinder with O-rings of each angulation were obtained to analyze the relationship among them, and O-ring sections tested in each angulation were compared with an unused counterpart. A mixed linear model was used to analyze the data, and the comparison was performed by orthogonal contrasts (alpha=0.05). Results At 0 degrees, the retention force decreased significantly over time, and the retention force was significantly different in all comparisons, except from 12 to 18 months. When the implants were positioned at 7 degrees, the retention force was statistically different at 0 and 24 months. At 14 degrees, significant differences were found from 6 and 12 to 24 months. Conclusions Within the limitations of this study, it was concluded that O-rings for implant/attachments perpendicular to the occlusal plane were adequately retentive over the first year and that the retentive capacity of O-ring was affected by implant inclinations despite the proposed positioners. To cite this article:Rodrigues RCS, Faria ACL, Macedo AP, Sartori IAM, de Mattos MGC, Ribeiro RF. An in vitro study of non-axial forces upon the retention of an O-ring attachment.Clin. Oral Impl. Res. 20, 2009; 1314-1319.doi: 10.1111/j.1600-0501.2009.01742.x.
Resumo:
Different sites of plasma membrane attachment may underlie functional differences between isoforms of Ras. Here we show that palmitoylation and farnesylation targets H-ras to lipid rafts and caveolae, but that the interaction of H-ras with these membrane subdomains is dynamic. GTP-loading redistributes H-ras from rafts into bulk plasma membrane by a mechanism that requires the adjacent hypervariable region of H-ras. Release of H-ras-GTP from rafts is necessary for efficient activation of Raf. By contrast, K-ras is located outside rafts irrespective of bound nucleotide. Our studies identify a novel protein determinant that is required for H-ras function, and show that the GTP/GDP state of H-ras determines its lateral segregation on the plasma membrane.
Resumo:
Axonal regeneration of retinal ganglion cells (RGCs) into a normal or pre-degenerated peripheral nerve graft after an optic nerve pre-lesion was investigated. A pre-lesion performed 1-2 weeks before a second lesion has been shown to enhance axonal regeneration in peripheral nerves (PN) but not in optic nerves (ON) in mammals. The lack of such a beneficial pre-lesion effect may be due to the long delay (1-6 weeks) between the two lesions since RGCs and their axons degenerate rapidly 1-2 weeks following axotomy in adult rodents. The present study examined the effects of the proximal and distal ON pre-lesions with a shortened delay (0-8 days) on axonal regeneration of RGCs through a normal or pre-degenerated PN graft. The ON of adult hamsters was transected intraorbitallv at 2 mm. (proximal lesion) or intracranially at 7 mm (distal lesion) from the optic disc. The pre-lesioned ON was re-transected at 0.5 mm from the disc after 0, 1, 2, 4, or 8 days and a normal or a pre-degenerated PN graft was attached onto the ocular stump. The number of RGCs regenerating their injured axons into the PN graft was estimated by retrograde labeling with FluoroGold 4 weeks after grafting. The number of regenerating RGCs decreased significantly when the delay-time increased in animals with both the ON pre-lesions (proximal or distal) compared to control animals without an ON pre-lesion. The proximal ON pre-lesion significantly reduced the number of regenerating RGCs after a delay of 8 days in comparison with the distal lesion. However, this adverse effect can be overcome, to some degree, by a pre-degenerated PN graft applied 2, 4, or 8 days after the distal ON pre-lesion enhanced more RGCs to regenerate than the normal PN graft. Thus, in order to obtain the highest number of regenerating RGCs, a pre-degenerated PN should be grafted immediately after an ON lesion.
Resumo:
Sol-gel chemistry allows the immobilization of organic molecules of biological origin on suibtable solid supports, permitting their integration into biosensing devices widening the possibility of local applications. The present work is an application of this principle, where the link between electrical receptor platform and the antibody acting as biorecognition element is made by sol-gel chemistry. The immunosensor design was targeted for carcinoembryonic antigen (CEA), an important biomarker for screening the colorectal cancer, by electrochemical techniques, namely electrochemical impedance spectroscopy (EIS) and square wave voltammetry (SVW). The device displayed linear behavior to CEA in EIS and in SWV assays ranging from 0.50 to 1.5ng/mL, and 0.25 to 1.5ng/mL, respectively. The corresponding detection limits were 0.42 and 0.043 ng/mL. Raman spectroscopy was used to characterize the surface modifications on the conductive platform (FTO glass). Overall, simple sol-gel chemistry was effective at the biosensing design and the presented approach can be a potential method for screening CEA in point-of-care, due to the simplicity of fabrication, short response time and low cost. - See more at: http://www.eurekaselect.com/127192/article#sthash.m1AWhINx.dpuf
Resumo:
The interaction of ionising radiation with living tissues may direct or indirectly generate several secondary species with relevant genotoxic potential. Due to recent findings that electrons with energies below the ionisation threshold can effectively damage DNA, radiation-induced damage to biological systems has increasingly come under scrutiny. The exact physico-chemical processes that occur in the first stages of electron induced damage remain to be explained. However, it is also known that free electrons have a short lifetime in the physiological medium. Hence, electron transfer processes studies represent an alternative approach through which the role of "bound" electrons as a source of damage to biological tissues can be further explored. The thesis work consists of studying dissociative electron attachment (DEA) and electron transfer to taurine and thiaproline. DEA measurements were executed in Siedlce University with Prof. Janina Kopyra under COST action MP1002 (Nanoscale insights in ion beam cancer therapy). The electron transfer experiments were conducted in a crossed atom(potassium)-molecule beam arrangement. In these studies the anionic fragmentation patterns were obtained. The results of both mechanisms are shown to be significantly different, unveiling that the damaging potential of secondary electrons can be underestimated. In addition, sulphur atoms appear to strongly influence the dissociation process, demonstrating that certain reactions can be controlled by substitution of sulphur at specific molecular sites.
Resumo:
During last years, photophysical properties of complexes of semiconductor quantum dots (QDs) with organic dyes have attracted increasing interest. The development of different assemblies based on QDs and organic dyes allows to increase the range of QDs applications, which include imaging, biological sensing and electronic devices.1 Some studies demonstrate energy transfer between QDs and organic dye in assemblies.2 However, for electronic devices purposes, a polymeric matrix is required to enhance QDs photostability. Thus, in order to attach the QDs to the polymer surface it is necessary to chemically modify the polymer to induce electronic charges and stabilize the QDs in the polymer. The present work aims to investigate the design of assemblies based on polymer-coated QDs and an integrated acceptor organic dye. Polymethylmethacrylate (PMMA) and polycarbonate (PC) were used as polymeric matrices, and nile red as acceptor. Additionally, a PMMA matrix modified with 2-mercaptoethylamine is used to improve the attachment between both the donor (QDs) and the acceptor (nile red), as well as to induce a covalent bond between the modified PMMA and the QDs. An enhancement of the energy transfer efficiency by using the modified PMMA is expected and the resulting assembly can be applied for energy harvesting.