977 resultados para biogenic carbonate


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tracking the movement of migratory freshwater fish is essential to those invested in rebuilding declining fish populations. Using strontium isotopic signatures to match calcified fish tissues to streams where fish spawn is a useful method of tracking migratory fish where physical tracking methods such as radio, acoustic, or external tags, have proven unsuccessful. In this study, we develop tools to practice this method of tracking fish in Lake Roosevelt and its upstream tributaries in Washington State by analyzing the elemental concentrations and 87Sr/86Sr ratios of water samples, and mussel shell samples. This study evaluates whether mussel shells act as an appropriate proxy for water chemistry by comparing the 87Sr/86Sr isotope ratios of water samples to the 87Sr/86Sr isotope ratios of mussel shells sampled from the same, or nearby, locations. We compare concentrations of Ba, Ca, Cd, Cu, Fe, Mg, Pb, Sr, and U in the water and mussel shell samples to determine the feasibility of using mussel shells as a proxy for water chemistry. If it is determined that the concentrations of these elements in mussel shells reflect that of the surrounding water composition, the elemental composition of mussel shells can be compared to that of calcified tissues in fish, such as otoliths, to infer the location of the natal stream. We report analyses of water and mussel shell samples collected from Lake Roosevelt, Sanpoil River, Spokane River, Colville River, Kettle River, Pend Oreille River, Kootenay River, and Columbia River in Washington State. Each of these rivers is a tributary to Lake Roosevelt, and each flows through different geologic units. We hypothesize that the differences in the rock units of each stream’s watershed are reflected in the elemental concentrations and strontium isotopic ratios of water in each stream and in the lake. We also hypothesize that the composition of the mussel shells will match the composition of the water samples, therefore allowing us to use the mussel shells as a proxy for local water chemistry. Additionally, we hypothesize that the composition of the mussel shells will vary by location, and that we will be able to then infer where a fish is from by matching the composition of the fish in question to the mussels we have analyzed. We found that 87Sr/86Sr values for water and mussel hinge samples collected from tributaries east of Lake Roosevelt are significantly higher than the 87Sr/86Sr values for samples collected from tributaries west of Lake Roosevelt with averages of 0.7235 and 0.7089, respectively. The average 87Sr/86Sr ratios for water and mussel hinge samples collected within Lake Roosevelt is 0.7158, which is between the averages for samples collected east and west of the lake. Generally, older rocks are exposed on the east side of the lake, and younger rocks on the west side of the lake, so our 87Sr/86Sr values support the hypothesis that geologic units are a primary control on water chemistry, and that tributary compositions mix to form an average weighed by flow in Lake Roosevelt. The 87Sr/86Sr values for water and mussel shell samples collected from the same locations have a strong, positive linear correlation, suggesting that mussel shell 87Sr/86Sr ratios reflect the 87Sr/86Sr ratios of the ambient water. With these data, we can distinguish between different streams and the lake, but cannot distinguish between samples from within the same stream or within Lake Roosevelt. The Sr:Ca and Fe:Ca ratios of water samples show positive correlations with mussel shell compositions, with R2 values of 0.82 and 0.52, respectively. Ratios of Mg, Ba, Cu, Cd, Pb, and U to Ca showed little or no positive correlation between water and mussel shell samples. The elemental concentration data collected for this study do not demonstrate whether a correlation between elemental ratios in water samples and elemental ratios in mussel shell samples collected from the same location exists. Positive Sr:Ca and Fe:Ca correlations for water versus mussel shell samples indicate that perhaps for some elements, the composition of mussel shells are representative of the composition of ambient water. Using elemental concentration ratios to complement 87Sr/86Sr isotopic data may enhance our ability to identify correlations between water and mussel shell samples, and ultimately between mussel shell and otolith samples. The hinge part of a mussel shell may be used as a proxy for local water composition because the mussel shell composition reflects that of the local ambient water. The hinge of the mussel has the same composition as the whole mussel shell. We measured variation of 87Sr/86Sr ratios in the water among different streams and Lake Roosevelt. The 87Sr/86Sr values for samples collected in tributaries east of Lake Roosevelt, which erode older rocks, are higher for mussel shell and water samples than the average 87Sr/86Sr values for mussel shell and water samples collected in tributaries west of Lake Roosevelt, which flow through younger rocks.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Oxygen- and carbon-isotope ratios in the carbonate of benthic ostracodes (Pseudocandona marchica) and molluscs (Pisidium ssp.) were measured across the transitions bordering the Younger Dryas chronozone in littoral lacustrine cores from Gerzensee (Switzerland). The specific biogenic carbonate records confirm the major shifts already visible in the continuous bulk-carbonate oxygen-isotope record (δ18OCc). If corrected for their vital offsets, oxygen-isotope ratios of Pisidium and juvenile P. marchica, both formed in summer, are almost identical to δ18OCc. This bulk carbonate is mainly composed of encrustations of benthic macrophythes (Chara ssp.), also mainly produced during summer. Adult P. marchica, which calcify in winter, show consistently higher δ18O, larger shifts across both transitions, and short positive excursions compared with the summer forms, especially during early Preboreal. Despite such complexity, the δ18O of adult P. marchica probably reflects more accurately the variations of the δ18O of former lake water because, during winter, calcification temperatures are less variable and the water column isotopically uniform. The difference between normalised δ18O of calcite precipitated in winter to that formed in summer can be used to estimate the minimum difference between summer and winter water temperatures. In general, the results indicate warmer summers during the late Allerød and early Preboreal compared with the Younger Dryas. Altogether, the isotopic composition of lake water (δ18OL) and of the dissolved inorganic carbonate (δ13CDIC) reconstructed from adult Pseudocandona marchica, as well as the seasonal water temperature contrasts, indicate that the major shifts in the δ18O of local precipitation at Gerzensee were augmented by changes of the lake's water balance, with relatively higher evaporative loss occurring during the Allerød compared with the Younger Dryas. It is possible that during the early Preboreal the lake might even have been hydrologically closed for a short period. We speculate that such hydrologic changes reflect a combination of varying evapotranspiration and a rearrangement of groundwater recharge during those climatic shifts.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work was based on a study of the upper layer of recent carbonate bottom sediments of the Atlantic Ocean. Biogenic carbonate of recent sediments is represented by metastable and stable minerals. In the ocean metastable phases can exist indefinitely long, but the structure of polymorphism determines inevitability of transformation of metastable phases into stable ones. This transformation occurs in the solid phase. In the absence of a critical point between the two phases of the transition process is not available for study by microscopic methods. It is estimated indirectly by studying the nature and extent of changes in mineral and chemical compositions. With aging of sediments their mineral composition alters in direction of increasing contents of resistant minerals. Fine grained sediments and fractions are subject to more intensive effects of early diagenesis processes, rather than coarse ones; this is reflected in their mineral composition. Regularities of distribution of carbonate minerals in size fractions consistent with the direction of polymorphic transformations in calcium carbonate. Such transformations can occur in a particular dimension of grains. Concrete grain size depends on environmental conditions. This situation explains presence of metastable biogenic carbonates at different depths of the ocean and suggests presence of diagenetic calcite in sediments occurring below expected for each case depth of the transition.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

At Site 572, located at 1°N, 114° W (3903 m water depth), we recovered a continuous hydraulic piston cored section of upper Miocene to upper Pleistocene pelagic sediments. The sediment is composed of biogenic carbonate and silica with nonbiogenic material as a minor component. Detailed analysis of the calcium carbonate content shows that the degree of variability in carbonate deposition apparently changed markedly between the late Miocene and Pliocene at this equatorial Pacific site. During this interval carbonate mass accumulation rates decreased from 2.6 to 0.8 g/cm**2 per 10**3 yr. If we assume that variations in CaCO3 content reflect changes in the degree of dissolution, then the detailed carbonate analysis would suggest that the degree of variability in carbonate deposition decreases by a factor of 5 as the dominant wavelength of variations increases significantly. However, if the variability in carbonate concentration is described in terms of changes in mean mass accumulation, calculations then suggest that relatively small changes in noncarbonate rates may be important in controlling the observed carbonate records. In addition, the analysis suggests that the degree of variability observed in pelagic carbonate data may in part reflect total accumulation rates. Intervals with high sedimentation rates show lower amplitude variations in concentration than intervals with lower sedimentation rates for the same degree of change in the carbonate accumulation rate.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

At DSDP Sites 534 (Central Atlantic) and 535 and 540 (Gulf of Mexico), and in the Vocontian Basin (France), Lower Cretaceous deposits show a very pronounced alternation of limestone and marl. This rhythm characterizes the pelagic background sedimentation and is independent of detritic intercalations related to contour and turbidity currents. Bed-scale cycles, estimated to be 6000-26,000 yr. long, comprise major and minor units. Their biological and mineralogic components, burrowing, heavy isotopes C and O, and some geochemical indicators, vary in close correlation with CaCO3 content. Vertical changes of frequency and asymmetry of the cycles are connected with fluctuations of the sedimentation rate. Plots of cycle thickness ("cyclograms") permit detailed correlations of the three areas and improve the stratigraphic subdivision of Neocomian deposits at the DSDP sites. Small-scale alternations, only observed in DSDP cores, comprise centimetric to millimetric banding and millimetric to micrometric lamination, here interpreted as varvelike alternations between laminae that are rich in calcareous plankton and others rich in clay. The laminations are estimated to correspond to cycles approximately 1,3, and 13 yr. in duration. The cyclic patterns appear to be governed by an interplay of continental and oceanic processes. Oceanic controls express themselves in variations of the biogenic carbonate flux, which depends on variations of such elements as temperature, oxygenation, salinity, and nutrient content. Continental controls modulate the influxes of terrigenous material, organic matter, and nutrients derived from cyclic erosion on land. Among the possible causes of cyclic sedimentation, episodic carbonate dissolution has been ruled out in favor of climatic fluctuations with a large range of periods. Such fluctuations are consistent with the great geographic extension shown by alternation controls and with the continuous spectrum of scales that characterizes limestone-marl cycles. The climatic variations induced by the Earth's orbital parameters (Milankovitch cycles) could be connected to bed-interbed alternations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Deep-sea pore fluids are potential archives of ancient seawater chemistry. However, the primary signal recorded in pore fluids is often overprinted by diagenetic processes. Recent studies have suggested that depth profiles of Mg concentration in deep-sea carbonate pore fluids are best explained by a rapid rise in seawater Mg over the last 10-20 Myr. To explore this possibility we measured the Mg isotopic composition of pore fluids and carbonate sediments from Ocean Drilling Program (ODP) site 807. Whereas the concentration of Mg in the pore fluid declines with depth, the isotopic composition of Mg in the pore fluid increases from -0.78 per mil near the sediment-water interface to -0.15 per mil at 778 mbsf. The Mg isotopic composition of the sediment, with few important exceptions, does not change with depth and has an average d26Mg value of -4.72 per mil. We reproduce the observed changes in sediment and pore-fluid Mg isotope values using a numerical model that incorporates Mg, Ca and Sr cycling and satisfies existing pore-fluid Ca isotope and Sr data. Our model shows that the observed trends in magnesium concentrations and isotopes are best explained as a combination of two processes: a secular rise in the seawater Mg over the Neogene and the recrystallization of low-Mg biogenic carbonate to a higher-Mg diagenetic calcite. These results indicate that burial recrystallization will add Mg to pelagic carbonate sediments, leading to an overestimation of paleo-temperatures from measured Mg/Ca ratios. The Mg isotopic composition of foraminiferal calcite appears to be only slightly altered by recrystallization making it possible to reconstruct the Mg isotopic composition of seawater through time.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The shells of marine mollusks are widely used archives of past climate and ocean chemistry. Whilst the measurement of mollusk delta 18O to develop records of past climate change is a commonly used approach, it has proven challenging to develop reliable independent paleothermometers that can be used to deconvolve the contributions of temperature and fluid composition on molluscan oxygen isotope compositions. Here we investigate the temperature dependence of 13C-18O bond abundance, denoted by the measured parameter Delta 47, in shell carbonates of bivalve mollusks and assess its potential to be a useful paleothermometer. We report measurements on cultured specimens spanning a range in water temperatures of 5 to 25 °C, and field collected specimens spanning a range of -1 to 29 °C. In addition we investigate the potential influence of carbonate saturation state on bivalve stable isotope compositions by making measurements on both calcitic and aragonitic specimens that have been cultured in seawater that is either supersaturated or undersaturated with respect to aragonite. We find a robust relationship between Delta 47 and growth temperature. We also find that the slope of a linear regression through all the Delta 47 data for bivalves plotted against seawater temperature is significantly shallower than previously published inorganic and biogenic carbonate calibration studies produced in our laboratory and go on to discuss the possible sources of this difference. We find that changing seawater saturation state does not have significant effect on the Delta 47 of bivalve shell carbonate in two taxa that we examined, and we do not observe significant differences between Delta 47-temperature relationships between calcitic and aragonitic taxa.