981 resultados para biodiesel exhaust


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of fuel emissions is crucial for understanding the pathogenesis of mortality because of air pollution. The objective of this study is to assess cardiovascular and inflammatory toxicity of diesel and biodiesel particles. Mice were exposed to fuels for 1 h. Heart rate (HR), heart rate variability, and blood pressure were obtained before exposure, as well as 30 and 60 min after exposure. After 24 h, bronchoalveolar lavage, blood, and bone marrow were collected to evaluate inflammation. B100 decreased the following emission parameters: mass, black carbon, metals, CO, polycyclic aromatic hydrocarbons, and volatile organic compounds compared with B50 and diesel; root mean square of successive differences in the heart beat interval increased with diesel (p < 0.05) compared with control; low frequency increased with diesel (p < 0.01) and B100 (p < 0.05) compared with control; HR increased with B100 (p < 0.05) compared with control; mean corpuscular volume increased with B100 compared with diesel (p < 0.01), B50, and control (p < 0.001); mean corpuscular hemoglobin concentration decreased with B100 compared with B50 (p < 0.001) and control (p < 0.05); leucocytes increased with B50 compared with diesel (p < 0.05); platelets increased with B100 compared with diesel and control (p < 0.05); reticulocytes increased with B50 compared with diesel, control (p < 0.01), and B100 (p < 0.05); metamyelocytes increased with B50 and B100 compared with diesel (p < 0.05); neutrophils increased with diesel and B50 compared with control (p < 0.05); and macrophages increased with diesel (p < 0.01), B50, and B100 (p < 0.05) compared with control. Biodiesel was more toxic than diesel because it promoted cardiovascular alterations as well as pulmonary and systemic inflammation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Alternative fuels are increasingly combusted in diesel- and gasoline engines and the contribution of such exhausts to the overall air pollution is on the rise. Recent findings on the possible adverse effects of biodiesel exhaust are contradictive, at least partly resulting from the various fuel qualities, engine types and different operation conditions that were tested. However, most of the studies are biased by undesired interactions between the exhaust samples and biological culture media. We here report how complete, freshly produced exhausts from fossil diesel (B0), from a blend of 20% rapeseed-methyl ester (RME) and 80% fossil diesel (B20) and from pure rapeseed methyl ester (B100) affect a complex 3D cellular model of the human airway epithelium in vitro by exposing the cells at the air–liquid interface. The induction of pro-apoptotic and necrotic cell death, cellular morphology, oxidative stress, and pro-inflammatory responses were assessed. Compared to B0 exhaust, B20 exhaust decreased oxidative stress and pro-inflammatory responses, whereas B100 exhaust, depending on exposure duration, decreased oxidative stress but increased pro-inflammatory responses. The effects are only very weak and given the compared to fossil diesel higher ecological sustainability of biodiesel, it appears that – at least RME – can be considered a valuable alternative to pure fossil diesel.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Waste cooking oils can be converted into fuels to provide economical and environmental benefits. One option is to use such fuels in stationary engines for electricity generation, co-generation or tri-generation application. In this study, biodiesel derived from waste cooking oil was tested in an indirect injection type 3-cylinder Lister Petter biodiesel engine. We compared the combustion and emission characteristics with that of fossil diesel operation. The physical and chemical properties of pure biodiesel (B100) and its blends (20% and 60% vol.) were measured and compared with those of diesel. With pure biodiesel fuel, full engine power was achieved and the cylinder gas pressure diagram showed stable operation. At full load, peak cylinder pressure of B100 operation was almost similar to diesel and peak burn rate of combustion was about 13% higher than diesel. For biodiesel operation, occurrences of peak burn rates were delayed compared to diesel. Fuel line injection pressure was increased by 8.5-14.5% at all loads. In comparison to diesel, the start of combustion was delayed and 90% combustion occurred earlier. At full load, the total combustion duration of B100 operation was almost 16% lower than diesel. Biodiesel exhaust gas emissions contained 3% higher CO2 and 4% lower NOx, as compared to diesel. CO emissions were similar at low load condition, but were decreased by 15 times at full load. Oxygen emission decreased by around 1.5%. Exhaust gas temperatures were almost similar for both biodiesel and diesel operation. At full engine load, the brake specific fuel consumption (on a volume basis) and brake thermal efficiency were respectively about 2.5% and 5% higher compared to diesel. Full engine power was achieved with both blends, and little difference in engine performance and emission results were observed between 20% and 60% blends. The study concludes that biodiesel derived from waste cooking oil gave better efficiency and lower NOx emissions than standard diesel. Copyright © 2012 SAE International.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the procedures of the analysis Of Pollutant gases, as volatile organic compounds (benzene, toluene, ethylbenzene, o-xylene, m-xylene and p-xylene) emitted by engines, using high-resolution gas chromatography (HRGC). In a broad sense, CI engine burning diesel was compared with B10 and a drastic reduction was observed in the emissions of the aromatic compounds by using B10. Especially for benzene, the reduction of concentrations occurs on the level of about 19.5%. Although a concentration value below 1 mu g ml(-1) has been obtained, this reduction is extremely significant since benzene is a carcinogenic compound. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Mecânica

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper evaluates and quantifies the environmental impact from the use of some renewable fuels and fossils fuels in internal combustion engines. The following fuels are evaluated: gasoline blended with anhydrous ethyl alcohol (anhydrous ethanol), conventional diesel fuel, biodiesel in pure form and blended with diesel fuel, and natural gas. For the case of biodiesel, its complete life cycle and the closed carbon cycle (photosynthesis) were considered. The ecological efficiency concept depends on the environmental impact caused by CO(2), SO(2), NO(x) and particulate material (PM) emissions. The exhaust gases from internal combustion engines, in the case of the gasoline (blended with alcohol), biodiesel and biodiesel blended with conventional diesel, are the less polluting; on the other hand, the most polluting are those related to conventional diesel. They can cause serious problems to the environment because of their dangerous components for the human, animal and vegetable life. The resultant pollution of each one of the mentioned fuels are analyzed, considering separately CO(2), SO(2), NO(x) and particulate material (PM) emissions. As conclusion, it is possible to calculate an environmental factor that represents, qualitatively and quantitative, the emissions in internal combustion engines that are mostly used in urban transport. Biodiesel in pure form (B100) and blended with conventional diesel as fuel for engines pollute less than conventional diesel fuel. The ecological efficiency for pure biodiesel (B100) is 86.75%: for biodiesel blended with conventional diesel fuel (B20, 20% biodiesel and 80% diesel), it is 78.79%. Finally, the ecological efficiency for conventional diesel, when used in engines, is 77.34%; for gasoline, it is 82.52%, and for natural gas, it is 91.95%. All these figures considered a thermal efficiency of 30% for the internal combustion engine. Crown Copyright (C) 2008 Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O trabalho apresenta um estudo experimental com a utilização de biodiesel, diesel, suas misturas e Gás Natural em uma microturbina à gás. O estudo tem como principal objetivo entender as emissões. O aparato experimental foi construído inteiramente com o propósito de realizar ensaios com gás natural e adaptações na linha de abastecimento foram realizadas para o fornecimento do combustível líquido, não tendo sido realizadas modificações na câmara de combustão. Os experimentos foram realizados para as rotações de 45.000rpm, 50.000rpm, 55.000rpm e 60.000rpm. Pelas dificuldades experimentais encontradas para o entendimento do processo de combustão e emissões geradas, um procedimento complementar para a estimativa das emissões é apresentado, resolvendo-se e estimando-se a composição das emissões através do software ComGas V1.0 para cálculo de combustão no equilibrio. Como contribuição, são apresentados dados experimentais de CO, CO2, O2, temperatura de exaustão dos gases, além das vazões mássicas, vazões molares, caracterização energética dos combustíveis e misturas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Ciência do Solo) - FCAV

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biodiesel production has received considerable attention in the recent past as a nonpolluting fuel. However, this assertion has been based on its biodegradability and reduction in exhaust emissions. Assessments of water and soil biodiesel pollution are still limited. Spill simulation with biodiesel and their diesel blends in soils were carried out, aiming at analyzing their cytotoxic and genotoxic potentials. While the cytotoxicity observed may be related to diesel contaminants, the genotoxic and mutagenic effects can be ascribed to biodiesel pollutants. Thus, taking into account that our data stressed harmful effects on organisms exposed to biodiesel-polluted soils, the designation of this biofuel as an environmental-friendly fuel should be carefully reviewed to assure environmental quality. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Petroleum supply and environmental pollution issues constantly increase interest in renewable low polluting alternative fuels. Published test results show decreased pollution with similar power output and fuel consumption from Internal Combustion Engines (ICE) burning alternative fuels. More specifically, diesel engines burning biodiesel derived from plant oils and animal fats not only reduce harmful exhaust emissions but are renewable and environmentally friendly. To validate these claims and assess the feasibility of alternative fuels, independent engine dynamometer and emissions testing was performed. A testing apparatus capable of making relevant measurements was designed, built, and used to test and determine the feasibility of biodiesel. The apparatus marks the addition of a valuable testing tool to the University and provides a foundation for future experiments. This thesis will discuss the background of biodiesel, testing methods, design and function of the testing apparatus, experimental results, relevant calculations, and conclusions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

De-inking sludge can be converted into useful forms of energy to provide economic and environmental benefits. In this study, pyrolysis oil produced from de-inking sludge through an intermediate pyrolysis technique was blended with biodiesel derived from waste cooking oil, and tested in a multi-cylinder indirect injection type CI engine. The physical and chemical properties of pyrolysis oil and its blends (20 and 30 vol.%) were measured and compared with those of fossil diesel and pure biodiesel (B100). Full engine power was achieved with both blends, and very little difference in engine performance and emission results were observed between 20% and 30% blends. At full engine load, the brake specific fuel consumption on a volume basis was around 6% higher for the blends when compared to fossil diesel. The brake thermal efficiencies were about 3-6% lower than biodiesel and were similar to fossil diesel. Exhaust gas emissions of the blends contained 4% higher CO2 and 6-12% lower NOx, as compared to fossil diesel. At full load, CO emissions of the blends were decreased by 5-10 times. The cylinder gas pressure diagram showed stable engine operation with the 20% blend, but indicated minor knocking with 30% blend. Peak cylinder pressure of the 30% blend was about 5-6% higher compared to fossil diesel. At full load, the peak burn rate of combustion from the 30% blend was about 26% and 12% higher than fossil diesel and biodiesel respectively. In comparison to fossil diesel the combustion duration was decreased for both blends; for 30% blend at full load, the duration was almost 12% lower. The study concludes that up to 20% blend of de-inking sludge pyrolysis oil with biodiesel can be used in an indirect injection CI engine without adding any ignition additives or surfactants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper studies the characteristics of blends of biodiesel and a new type of SSPO (sewage sludge derived intermediate pyrolysis oil) in various ratios, and evaluates the application of such blends in an unmodified Lister diesel engine. The engine performance and exhaust emissions were investigated and compared to those of diesel and biodiesel. The engine injectors were inspected and tested after the experiment. The SSPO-biodiesel blends were found to have comparable heating values to biodiesel, but relatively high acidity and carbon residue. The diesel engine has operated with a 30/70 SSPO-biodiesel blend and a 50/50 blend for up to 10h and there was no apparent deterioration in operation observed. It is concluded that with 30% SSPO, the engine gives better overall performance and fuel consumption than with 50% SSPO. The exhaust temperatures of 30% SSPO and 50% SSPO are similar, but 30% SSPO gives relatively lower NO emission than 50% SSPO. The CO and smoke emissions are lower with 50% SSPO than with 30% SSPO. The injectors of the engine operated with SSPO blends were found to have heavy carbon deposition and noticeably reduced opening pressure, which may lead to deteriorated engine performance and exhaust emissions in extended operation. © 2013 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biofuels derived from industry waste have potential to substitute fossil fuels (Diesel and Gasoline) in internal combustion (IC) engines. Use of waste streams as fuels would help to reduce considerably life-cycle greenhouse gas emissions and minimise waste processing costs. In this study an investigation into the fuel properties of two waste derived biofuels were carried out, they are: (i) Glidfuel (GF) biofuel - a waste stream from paper industry, and (ii) Palm Oil Mill Effluent (POME) biodiesel - biodiesel produced from palm oil industry effluent through various treatment and transesterification process. GF and POME was mixed together at various proportions and separately with fossil diesel (FD) to assess the miscibility and various physical and chemical properties of the blends. Fuel properties such as kinematic viscosity, higher heating value, water content, acid number, density, flash point temperature, CHNO content, sulphur content, ash content, oxidation stability, cetane number and copper corrosion ratings of all the fuels were measured. The properties of GF, POME and various blends were compared with the corresponding properties of the standard FD. Significance of the fuel properties and their expected effects on combustion and exhaust emission characteristics of the IC engine were discussed. Results showed that most properties of both GF and POME biodiesel were comparable to FD. Both GF and POME were miscible with each other, and also separately with the FD. Flash point temperatures of GF and POME biodiesel were 40.7°C and 158.7°C respectively. The flash point temperature of GF was about 36% lower than corresponding FD. The water content in GF and FD were 0.74 (% wt) and 0.01 (% wt) respectively. Acidity values and corrosion ratings of both GF and POME biodiesel were low compared to corresponding value for FD. The study concluded that optimum GF-POME biofuel blends can substitute fossil diesel use in IC engines.