10 resultados para biodemes
Resumo:
With the objective of establishing biological and biochemical characteristics of a significant number of Trypanosoma cruzi strains from different geographical areas, 138 strains isolated from naturally infected humans, triatomine or vertebrate hosts were studied; 120 were isolated from different areas of Brazil and 18 from other South and Central American countries. Inocula from triatomine or culture forms were injected into suckling Swiss mice, followed by passages into mice 10 to 12 g. Biological characters and histopathological study permitted the inclusion of the strains into three Types or biodemes: I, II, III. Isoenzymic analysis confirmed a correspondence between the biodemes and zymodemes : Type I and Z2b, Type II and Z2, Type III and Z1. Results showed the ubiquitary distribution of the several types of strains. The predominance of the same Type and zymodeme in one geographical area was confirmed : Type II strains among the human cases from eastern Bahia and east of Goiás; Type III strains from humans of north Brazil and Central America and from silvatic vectors or vertebrates from other geographical areas. The biological types of strains correlate with different histopathological lesions considering cardiac involvement and neuronal lesions. These findings suggest that the biological behavior together with isoenzymes patterns and pathological pictures in the vertebrate host can be an important tool for establishing correlations between strains behavior and clinico-pathological manifestations of Chagas' disease in different geographical areas.
Resumo:
Reinfections with Trypanosoma cruzi in patients from endemic areas have been claimed to be an aggravation factor of cardiac manifestations in Chagas' disease. In the present study, the influence of triple infections with strains of different biodemes, on cardiac and skeletal muscle lesions was experimentally tested. Fifty eight mice chronically infected with the Colombian strain (Biodeme Type III) were successively reinfected as follows: 1st group - reinfected with 21 SF strain (Type II) followed by Y strain (Type I ); 2nd - group reinfections with Y strain followed by 21SF strain. Isoenzyme analysis of parasites from hemocultures obtained from triple infected mice, revealed the patterns of three distinct zymodemes in the same animal. Each Trypanosoma cruzi strain was reisolated after four passages in mice on either the 7th, 14th or 30th day after inoculation with the blood of triple infected mice. Histopathology results demonstrated a significant exacerbation of cardiac and skeletal muscle inflammatory lesions, confirmed by morphometric evaluation, in mice with triple infection. No aggravation of parasitism was detected. The possibility of an enhancement of cellular response in the triple infected mice is suggested.
Resumo:
The influence of different Trypanosoma cruzi biodemes on the evolution of the infection and on the histopathological lesions of the heart and skeletal muscles, during the experimental infection of Calomys callosus, was investigated. Three groups of C. callosus were infected, respectively, with parasite strains representative of three different Biodemes: Type I (Y strain), Type II (21 SF strain), and Type III (Colombian strain). For each group, normal C. callosus were also used as controls. Marked differences have been detected in the responses of C. callosus to the infection with the three strains in this model. The strains Types I and II (Y and 21 SF) determined moderate lesions, mostly in the myocardium, with low parasitism, a rapid course, and total regression of the lesions by the 60th day of infection. Differently, Type III strain (Colombian), was more pathogenic for C. callosus and induced necrotic-inflammatory lesions in skeletal muscles and myocardium, in correspondence to intracellular parasitism. Proliferation of fibroblasts and amorphous matrix deposits, followed by interstitial fibrosis were present. Progressive regression of the inflammatory changes and collagen deposits occurred spontaneously. The progression and regression of both inflammation and fibrosis induced by the Colombian strain were further submitted to quantitative evaluation by morphometry. Results of the morphometric studies presented good correlation with the histopathological findings. The results confirm the importance of the different biodemes in the determination of tissue lesions and the peculiarities of response of C. callosus to infection with T. cruzi.
Resumo:
The behavior of T. cruzi strains from S. Felipe - BA (19 SF, 21 SF and 22 SF) classified as Type II Zymodeme 2, was investigated after passage through the authoctonous (P. megistus) and foreign vectors (T. infestans and R. prolixus). For each strain Swiss mice were infected: I - with blood forms (control); II - with metacyclic forms (MF) from P. megistus; III - with MF from T. infestans; IV - with MF from R. prolixus. Inocula: MF from the three species of triatomine, 60 to 120 days after feeding in infected mice, adjusted to 10 4. Biological behavior in mice (parasitemia, morphology, mortality, virulence and pathogenicity) after passage through triatomine was compared with data from the same strain in control mice. Isoenzymic electrophoresis (ASAT, ALAT, PGM, GPI) were also performed after culture into Warren medium. The three strains maintained the isoenzyme profiles (zymodeme 2), in the control groups and after passages through different species of triatomine. Biological characterization disclosed Type II strains patterns for all groups. An increased virulence was observed with the 22 SF strain isolated from P. megistus and T. infestans and higher levels of parasitemia and predominance of slender forms in mice inoculated with the 19 SF and 21 SF from these same species. Results indicate that the passage through the two species T. infestans and P. megistus had a positive influence on the virulence of the regional strains of S. Felipe, regardless of being autocthonous (P. megistus) or foreign to the area (T. infestans).
Resumo:
Oral transmission of Trypanosoma cruzi has been suspected when epidemic episodes of acute infection were observed in areas devoid of domiciled insect vectors. Considering that the distribution of T. cruzi biodemes differs in sylvatic and domestic cycles, results of studies on biodemes can be of interest regarding oral transmission. The infectivity of T. cruzi strains of different biodemes was tested in mice subjected to infection by the digestive route (gavage). Swiss mice were infected either with the Peruvian strain (Biodeme Type I, Z2b) or the Colombian strain (Biodeme Type III, Z1, or T. cruzi I); for control, intraperitoneal inoculation was performed in a group of mice. The Colombian strain revealed a similar high infectivity and pathogenicity when either route of infection was used. However, the Peruvian strain showed contrasting levels of infectivity and pathogenicity, being high by intraperitoneal inoculation and low when the gastric route was used. The higher infectivity of the Colombian strain (Biodeme Type III) by gastric inoculation is in keeping with its role in the epidemic episodes of acute Chagas disease registered in the literature, since strains belonging to Biodeme III are most often found in sylvatic hosts.
Resumo:
The clonal structure of the Colombian strain of Trypanosoma cruzi, biodeme Type III and zymodeme 1, was analyzed in order to characterize its populations and to establish its homogeneity or heterogeneity. Seven isolated clones presented the basic characteristics of Biodeme Type III, with the same patterns of parasitemic curves, tissue tropism to skeletal muscle and myocardium, high pathogenicity with extensive necrotic-inflammatory lesions from the 20th to 30th day of infection. The parental strain and its clones C1, C3, C4 and C6, determined the higher levels of parasitemia, 20 to 30 days of infection, with high mortality rate up to 30 days (79 to 100%); clones C2, C5 and C7 presented lower levels of parasitemia, with low mortality rates (7.6 to 23%). Isoenzymic patterns, characteristic of zymodeme 1, (Z1) were similar for the parental strain and its seven clones. Results point to a phenotypic homogeneity of the clones isolated from the Colombian strain and suggest the predominance of a principal clone, responsible for the biological behavior of the parental strain and clones.
Resumo:
Morpho-biological diversity of Trypanosoma cruzi has been known since Chagas' first works in 1909. Several further studies confirmed the morphological differences among the parasite strains, which were isolated from different reservoirs and vectors, as well as from human beings. In the early sixties, antigenic differences were found in the parasite strains from various sources. These differences, coupled to the observation of regional variations of the disease, led to the proposal of the term cruzi complex to designate the taxon T. cruzi. Since then this protozoan has been typed in distinct biodemes, zymodemes and lineages which were consensually grouped into T. cruzi I, T. cruzi II and into non-grouped strains. T. cruzi genotypic characterization, initially carried out by schizodeme analysis and more recently by various other techniques, has shown a great diversity of the parasite strains. In fact, T. cruzi is formed by groups of heterogeneous sub-population, which present specific characteristics, including distinct histotropism. The interaction of the different infecting clones of the cruzi complex and the human host will determine the morbidity of the disease.
Resumo:
In this study, three strains of Trypanosoma cruzi were isolated at the same time and in the same endemic region in Mexico from a human patient with chronic chagasic cardiomyopathy (RyC-H); vector (Triatoma barberi) (RyC-V); and rodent reservoir (Peromyscus peromyscus) (RyC-R). The three strains were characterized by multilocus enzyme electrophoresis, random amplified polymorphic DNA, and by pathological profiles in experimental animals (biodemes). Based on the analysis of genetic markers the three parasite strains were typed as belonging to T. cruzi I major group, discrete typing unit 1. The pathological profile of RyC-H and RyC-V strains indicated medium virulence and low mortality and, accordingly, the strains should be considered as belonging to biodeme Type III. On the other hand, the parasites from RyC-R strain induced more severe inflammatory processes and high mortality (> 40%) and were considered as belonging to biodeme Type II. The relationship between genotypes and biological characteristics in T. cruzi strains is still debated and not clearly understood. An expert committee recommended in 1999 that Biodeme Type III would correspond to T. cruzi I group, whereas Biodeme Type II, to T. cruzi II group. Our findings suggest that, at least for Mexican isolates, this correlation does not stand and that biological characteristics such as pathogenicity and virulence could be determined by factors different from those identified in the genotypic characterization
Resumo:
We examined strains of Trypanosoma cruzi isolated from patients with acute Chagas disease that had been acquired by oral transmission in the state of Santa Catarina, Brazil (2005) and two isolates that had been obtained from a marsupial (Didelphis aurita) and a vector (Triatoma tibiamaculata). These strains were characterised through their biological behaviour and isoenzymic profiles and genotyped according to the new Taxonomy Consensus (2009) based on the discrete typing unities, that is, T. cruzi genotypes I-VI. All strains exhibited the biological behaviour of biodeme type II. In six isolates, late peaks of parasitaemia, beyond the 20th day, suggested a double infection with biodemes II + III. Isoenzymes revealed Z2 or mixed Z1 and Z2 profiles. Genotyping was performed using three polymorphic genes (cytochrome oxidase II, spliced leader intergenic region and 24Sα rRNA) and the restriction fragment length polymorphism of the kDNA minicircles. Based on these markers, all but four isolates were characterised as T. cruzi II genotypes. Four mixed populations were identified: SC90, SC93 and SC97 (T. cruzi I + T. cruzi II) and SC95 (T. cruzi I + T. cruzi VI). Comparison of the results obtained by different methods was essential for the correct identification of the mixed populations and major lineages involved indicating that characterisation by different methods can provide new insights into the relationship between phenotypic and genotypic aspects of parasite behaviour.