826 resultados para bio-economic model
Resumo:
We present a participatory modelling framework that integrates information from interviews and discussions with farmers and consultants, with dynamic bio-economic models to answer complex questions on the allocation of limited resources at the farm business level. Interviews and discussions with farmers were used to: describe the farm business; identify relevant research questions; identify potential solutions; and discuss and learn from the whole-farm simulations. The simulations are done using a whole-farm, multi-field configuration of APSIM (APSFarm). APSFarm results were validated against farmers' experience. Once the model was accepted by the participating farmers as a fair representation of their farm business, the model was used to explore changes in the tactical or strategic management of the farm and results were then discussed to identify feasible options for improvement. Here we describe the modelling framework and present an example of the application of integrative whole farm system tools to answer relevant questions from an irrigated farm business case study near Dalby (151.27E - 27.17S), Queensland, Australia. Results indicated that even though cotton crops generates more farm income per hectare a more diversified rotation with less cotton would be relatively more profitable, with no increase in risk, as a more cotton dominated traditional rotation. Results are discussed in terms of the benefits and constraints from developing and applying more integrative approaches to represent farm businesses and their management in participatory research projects with the aim of designing more profitable and sustainable irrigated farming systems.
Resumo:
In many lower-income countries, the establishment of marine protected areas (MPAs) involves significant opportunity costs for artisanal fishers, reflected in changes in how they allocate their labor in response to the MPA. The resource economics literature rarely addresses such labor allocation decisions of artisanal fishers and how, in turn, these contribute to the impact of MPAs on fish stocks, yield, and income. This paper develops a spatial bio-economic model of a fishery adjacent to a village of people who allocate their labor between fishing and on-shore wage opportunities to establish a spatial Nash equilibrium at a steady state fish stock in response to various locations for no-take zone MPAs and managed access MPAs. Villagers’ fishing location decisions are based on distance costs, fishing returns, and wages. Here, the MPA location determines its impact on fish stocks, fish yield, and villager income due to distance costs, congestion, and fish dispersal. Incorporating wage labor opportunities into the framework allows examination of the MPA’s impact on rural incomes, with results determining that win-wins between yield and stocks occur in very different MPA locations than do win-wins between income and stocks. Similarly, villagers in a high-wage setting face a lower burden from MPAs than do those in low-wage settings. Motivated by issues of central importance in Tanzania and Costa Rica, we impose various policies on this fishery – location specific no-take zones, increasing on-shore wages, and restricting MPA access to a subset of villagers – to analyze the impact of an MPA on fish stocks and rural incomes in such settings.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The current policy decision making in Australia regarding non-health public investments (for example, transport/housing/social welfare programmes) does not quantify health benefits and costs systematically. To address this knowledge gap, this study proposes an economic model for quantifying health impacts of public policies in terms of dollar value. The intention is to enable policy-makers in conducting economic evaluation of health effects of non-health policies and in implementing policies those reduce health inequalities as well as enhance positive health gains of the target population. Health Impact Assessment (HIA) provides an appropriate framework for this study since HIA assesses the beneficial and adverse effects of a programme/policy on public health and on health inequalities through the distribution of those effects. However, HIA usually tries to influence the decision making process using its scientific findings, mostly epidemiological and toxicological evidence. In reality, this evidence can not establish causal links between policy and health impacts since it can not explain how an individual or a community reacts to changing circumstances. The proposed economic model addresses this health-policy linkage using a consumer choice approach that can explain changes in group and individual behaviour in a given economic set up. The economic model suggested in this paper links epidemiological findings with economic analysis to estimate the health costs and benefits of public investment policies. That is, estimating dollar impacts when health status of the exposed population group changes by public programmes – for example, transport initiatives to reduce congestion by building new roads/ highways/ tunnels etc. or by imposing congestion taxes. For policy evaluation purposes, the model is incorporated in the HIA framework by establishing association among identified factors, which drive changes in the behaviour of target population group and in turn, in the health outcomes. The economic variables identified to estimate the health inequality and health costs are levels of income, unemployment, education, age groups, disadvantaged population groups, mortality/morbidity etc. However, though the model validation using case studies and/or available database from Australian non-health policy (say, transport) arena is in the future tasks agenda, it is beyond the scope of this current paper.
Resumo:
Single-species management objectives may not be consistent within mixed fisheries. They may lead species to unsafe situations, promote discarding of over-quota and/or misreporting of catches. We provide an algorithm for characterising bio-economic reference points for a mixed fishery as the steady-state solution of a dynamic optimal management problem. The optimisation problem takes into account: i) that species are fishing simultaneously in unselective fishing operations and ii)intertemporal discounting and fleet costs to relate reference points to discounted economic profits along optimal trajectories. We illustrate how the algorithm can be implemented by applying it to the European Northern Stock of Hake (Merluccius merluccius), where fleets also capture Northern megrim (Lepidorhombus whiffiagonis) and Northern anglerfish (Lophius piscatorius and Lophius budegassa). We find that optimal mixed management leads to a target reference point that is quite similar to the 2/3 of the Fmsy single-species (hake) target. Mixed management is superior to singlespecies management because it leads the fishery to higher discounted profits with higher long-term SSB for all species. We calculate that the losses due to the use of the Fmsy single-species (hake) target in this mixed fishery account for 11.4% of total discounted profits.
Resumo:
The article was extracted from the author's dissertation entitled "Management of small pelagic fisheries on the northwest coast of Peninsular Malaysia: a bio-socioeconomic simulation analysis". The basic structure and uses of this simulation model are presented here.
Resumo:
Methods for determining cost-effectiveness of different treatments are well established, unlike appraisal of non-drug interventions, including novel diagnostics and biomarkers.