884 resultados para binary black
Resumo:
The generation of a large recoil velocity from the inspiral and merger of binary black holes represents one of the most exciting results of numerical-relativity calculations. While many aspects of this process have been investigated and explained, the ""antikick,"" namely, the sudden deceleration after the merger, has not yet found a simple explanation. We show that the antikick can be understood in terms of the radiation from a deformed black hole where the anisotropic curvature distribution on the horizon correlates with the direction and intensity of the recoil. Our analysis is focused on Robinson-Trautman spacetimes and allows us to measure both the energies and momenta radiated in a gauge-invariant manner. At the same time, this simpler setup provides the qualitative and quantitative features of merging black holes, opening the way to a deeper understanding of the nonlinear dynamics of black-hole spacetimes.
Resumo:
Abstract This doctoral thesis concerns the active galactic nucleus (AGN) most often referred to with the catalogue number OJ287. The publications in the thesis present new discoveries of the system in the context of a supermassive binary black hole model. In addition, the introduction discusses general characteristics of the OJ287 system and the physical fundamentals behind these characteristics. The place of OJ287 in the hierarchy of known types of AGN is also discussed. The introduction presents a large selection of fundamental physics required to have a basic understanding of active galactic nuclei, binary black holes, relativistic jets and accretion disks. Particularly the general relativistic nature of the orbits of close binaries of supermassive black holes is explored with some detail. Analytic estimates of some of the general relativistic effects in such a binary are presented, as well as numerical methods to calculate the effects more precisely. It is also shown how these results can be applied to the OJ287 system. The binary orbit model forms the basis for models of the recurring optical outbursts in the OJ287 system. In the introduction, two physical outburst models are presented in some detail and compared. The radiation hydrodynamics of the outbursts are discussed and optical light curve predictions are derived. The precursor outbursts studied in Paper III are also presented, and tied into the model of OJ287. To complete the discussion of the observable features of OJ287, the nature of the relativistic jets in the system, and in active galactic nuclei in general, is discussed. Basic physics of relativistic jets are presented, with additional detail added in the form of helical jet models. The results of Papers II, IV and V concerning the jet of OJ287 are presented, and their relation to other facets of the binary black hole model is discussed. As a whole, the introduction serves as a guide, though terse, for the physics and numerical methods required to successfully understand and simulate a close binary of supermassive black holes. For this purpose, the introduction necessarily combines a large number of both fundamental and specific results from broad disciplines like general relativity and radiation hydrodynamics. With the material included in the introduction, the publications of the thesis, which present new results with a much narrower focus, can be readily understood. Of the publications, Paper I presents newly discovered optical data points for OJ287, detected on archival astronomical plates from the Harvard College Observatory. These data points show the 1900 outburst of OJ287 for the first time. In addition, new data points covering the 1913 outburst allowed the determination of the start of the outburst with more precision than was possible before. These outbursts were then successfully numerically modelled with an N-body simulation of the OJ287 binary and accretion disc. In Paper II, mechanisms for the spin-up of the secondary black hole in OJ287 via interaction with the primary accretion disc and the magnetic fields in the system are discussed. Timescales for spin-up and alignment via both processes are estimated. It is found that the secondary black hole likely has a high spin. Paper III reports a new outburst of OJ287 in March 2013. The outburst was found to be rather similar to the ones reported in 1993 and 2004. All these outbursts happened just before the main outburst season, and are called precursor outbursts. In this paper, a mechanism was proposed for the precursor outbursts, where the secondary black hole collides with a gas cloud in the primary accretion disc corona. From this, estimates of brightness and timescales for the precursor were derived, as well as a prediction of the timing of the next precursor outburst. In Paper IV, observations from the 2004–2006 OJ287 observing program are used to investigate the existence of short periodicities in OJ287. The existence of a _50 day quasiperiodic component is confirmed. In addition, statistically significant 250 day and 3.5 day periods are found. Primary black hole accretion of a spiral density wave in the accretion disc is proposed as the source of the 50 day period, with numerical simulations supporting these results. Lorentz contracted jet re-emission is then proposed as the reason for the 3.5 day timescale. Paper V fits optical observations and mm and cm radio observations of OJ287 with a helical jet model. The jet is found to have a spine–sheath structure, with the sheath having a much lower Lorentz gamma factor than the spine. The sheath opening angle and Lorentz factor, as well as the helical wavelength of the jet are reported for the first time. Tiivistelmä Tässä väitöskirjatutkimuksessa on keskitytty tutkimaan aktiivista galaksiydintä OJ287. Väitöskirjan osana olevat tieteelliset julkaisut esittelevät OJ287-systeemistä saatuja uusia tuloksia kaksoismusta-aukkomallin kontekstissa. Väitöskirjan johdannossa käsitellään OJ287:n yleisiä ominaisuuksia ja niitä fysikaalisia perusilmiöitä, jotka näiden ominaisuuksien taustalla vaikuttavat. Johdanto selvittää myös OJ287-järjestelmän sijoittumisen aktiivisten galaksiytimien hierarkiassa. Johdannossa käydään läpi joitakin perusfysiikan tuloksia, jotka ovat tarpeen aktiivisten galaksiydinten, mustien aukkojen binäärien, relativististen suihkujen ja kertymäkiekkojen ymmärtämiseksi. Kahden toisiaan kiertävän mustan aukon keskinäisen radan suhteellisuusteoreettiset perusteet käydään läpi yksityiskohtaisemmin. Johdannossa esitetään joitakin analyyttisiä tuloksia tällaisessa binäärissä havaittavista suhteellisuusteoreettisista ilmiöistä. Myös numeerisia menetelmiä näiden ilmiöiden tarkempaan laskemiseen esitellään. Tuloksia sovelletaan OJ287-systeemiin, ja verrataan havaintoihin. OJ287:n mustien aukkojen ratamalli muodostaa pohjan systeemin toistuvien optisten purkausten malleille. Johdannossa esitellään yksityiskohtaisemmin kaksi fysikaalista purkausmallia, ja vertaillaan niitä. Purkausten säteilyhydrodynamiikka käydään läpi, ja myös ennusteet purkausten valokäyrille johdetaan. Johdannossa esitellään myös Julkaisussa III johdettu prekursoripurkausten malli, ja osoitetaan sen sopivan yhteen OJ287:n binäärimallin kanssa. Johdanto esittelee myös relativististen suihkujen fysiikkaa sekä OJ287- systeemiin liittyen että aktiivisten galaksiydinten kontekstissa yleisesti. Relativististen suihkujen perusfysiikka esitellään, kuten myös malleja kierteisistä suihkuista. Julkaisujen II, IV ja V OJ287-systeemin suihkuja koskevat tulokset esitellään binäärimallin kontekstissa. Kokonaisuutena johdanto palvelee suppeana oppaana, joka esittelee tarvittavan fysiikan ja tarpeelliset numeeriset menetelmät mustien aukkojen binäärijärjestelmän ymmärtämiseen ja simulointiin. Tätä tarkoitusta varten johdanto yhdistää sekä perustuloksia että joitakin syvällisempiä tuloksia laajoilta fysiikan osa-alueilta kuten suhteellisuusteoriasta ja säteilyhydrodynamiikasta. Johdannon sisältämän materiaalin avulla väitöskirjan julkaisut, ja niiden esittämät tulokset, ovat hyvin ymmärrettävissä. Väitöskirjan julkaisuista ensimmäinen esittelee uusia OJ287-systeemistä saatuja havaintopisteitä, jotka on paikallistettu Harvardin yliopiston observatorion arkiston valokuvauslevyiltä. OJ287:n vuonna 1900 tapahtunut purkaus nähdään ensimmäistä kertaa näissä havaintopisteissä. Uudet havaintopisteet mahdollistivat myös vuoden 1913 purkauksen alun ajoittamisen tarkemmin kuin aiemmin oli mahdollista. Havaitut purkaukset mallinnettiin onnistuneesti simuloimalla OJ287-järjestelmän mustien aukkojen paria ja kertymäkiekkoa. Julkaisussa II käsitellään mekanismeja OJ287:n sekundäärisen mustan aukon spinin kasvamiseen vuorovaikutuksessa primäärin kertymäkiekon ja systeemin magneettikenttien kanssa. Julkaisussa arvioidaan maksimispinin saavuttamisen ja spinin suunnan vakiintumisen aikaskaalat kummallakin mekanismilla. Tutkimuksessa havaitaan sekundäärin spinin olevan todennäköisesti suuri. Julkaisu III esittelee OJ287-systeemissä maaliskuussa 2013 tapahtuneen purkauksen. Purkauksen havaittiin muistuttavan vuosina 1993 ja 2004 tapahtuneita purkauksia, joita kutsutaan yhteisnimityksellä prekursoripurkaus (precursor outburst). Julkaisussa esitellään purkauksen synnylle mekanismi, jossa OJ287-systeemin sekundäärinen musta aukko osuu primäärisen mustan aukon kertymäkiekon koronassa olevaan kaasupilveen. Mekanismin avulla johdetaan arviot prekursoripurkausten kirkkaudelle ja aikaskaalalle. Julkaisussa johdetaan myös ennuste seuraavan prekursoripurkauksen ajankohdalle. Julkaisussa IV käytetään vuosina 2004–2006 kerättyjä havaintoja OJ287- systeemistä lyhyiden jaksollisuuksien etsintään. Julkaisussa varmennetaan systeemissä esiintyvä n. 50 päivän kvasiperiodisuus. Lisäksi tilastollisesti merkittävät 250 päivän ja 3,5 päivän jaksollisuudet havaitaan. Julkaisussa esitetään malli, jossa primäärisen mustan aukon kertymäkiekossa oleva spiraalitiheysaalto aiheuttaa 50 päivän jaksollisuuden. Mallista tehty numeerinen simulaatio tukee tulosta. Systeemin relativistisen suihkun emittoima aikadilatoitunut säteily esitetään aiheuttajaksi 3,5 päivän jaksollisuusaikaskaalalle. Julkaisussa V sovitetaan kierresuihkumalli OJ287-systeemistä tehtyihin optisiin havaintoihin ja millimetri- sekä senttimetriaallonpituuden radiohavaintoihin. Suihkun rakenteen havaitaan olevan kaksijakoinen ja koostuvan ytimestä ja kuoresta. Suihkun kuorella on merkittävästi pienempi Lorentzin gamma-tekijä kuin suihkun ytimellä. Kuoren avautumiskulma ja Lorentztekijä sekä suihkun kierteen aallonpituus raportoidaan julkaisussa ensimmäistä kertaa.
Resumo:
The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave (GW) astrophysics communities. The purpose of NINJA is to study the ability to detect GWs emitted from merging binary black holes (BBH) and recover their parameters with next-generation GW observatories. We report here on the results of the second NINJA project, NINJA-2, which employs 60 complete BBH hybrid waveforms consisting of a numerical portion modelling the late inspiral, merger, and ringdown stitched to a post-Newtonian portion modelling the early inspiral. In a 'blind injection challenge' similar to that conducted in recent Laser Interferometer Gravitational Wave Observatory (LIGO) and Virgo science runs, we added seven hybrid waveforms to two months of data recoloured to predictions of Advanced LIGO (aLIGO) and Advanced Virgo (AdV) sensitivity curves during their first observing runs. The resulting data was analysed by GW detection algorithms and 6 of the waveforms were recovered with false alarm rates smaller than 1 in a thousand years. Parameter-estimation algorithms were run on each of these waveforms to explore the ability to constrain the masses, component angular momenta and sky position of these waveforms. We find that the strong degeneracy between the mass ratio and the BHs' angular momenta will make it difficult to precisely estimate these parameters with aLIGO and AdV. We also perform a large-scale Monte Carlo study to assess the ability to recover each of the 60 hybrid waveforms with early aLIGO and AdV sensitivity curves. Our results predict that early aLIGO and AdV will have a volume-weighted average sensitive distance of 300 Mpc (1 Gpc) for 10M circle dot + 10M circle dot (50M circle dot + 50M circle dot) BBH coalescences. We demonstrate that neglecting the component angular momenta in the waveform models used in matched-filtering will result in a reduction in sensitivity for systems with large component angular momenta. This reduction is estimated to be up to similar to 15% for 50M circle dot + 50M circle dot BBH coalescences with almost maximal angular momenta aligned with the orbit when using early aLIGO and AdV sensitivity curves.
Resumo:
Despite the success of the ΛCDM model in describing the Universe, a possible tension between early- and late-Universe cosmological measurements is calling for new independent cosmological probes. Amongst the most promising ones, gravitational waves (GWs) can provide a self-calibrated measurement of the luminosity distance. However, to obtain cosmological constraints, additional information is needed to break the degeneracy between parameters in the gravitational waveform. In this thesis, we exploit the latest LIGO-Virgo-KAGRA Gravitational Wave Transient Catalog (GWTC-3) of GW sources to constrain the background cosmological parameters together with the astrophysical properties of Binary Black Holes (BBHs), using information from their mass distribution. We expand the public code MGCosmoPop, previously used for the application of this technique, by implementing a state-of-the-art model for the mass distribution, needed to account for the presence of non-trivial features, i.e. a truncated power law with two additional Gaussian peaks, referred to as Multipeak. We then analyse GWTC-3 comparing this model with simpler and more commonly adopted ones, both in the case of fixed and varying cosmology, and assess their goodness-of-fit with different model selection criteria, and their constraining power on the cosmological and population parameters. We also start to explore different sampling methods, namely Markov Chain Monte Carlo and Nested Sampling, comparing their performances and evaluating the advantages of both. We find concurring evidence that the Multipeak model is favoured by the data, in line with previous results, and show that this conclusion is robust to the variation of the cosmological parameters. We find a constraint on the Hubble constant of H0 = 61.10+38.65−22.43 km/s/Mpc (68% C.L.), which shows the potential of this method in providing independent constraints on cosmological parameters. The results obtained in this work have been included in [1].
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We find that the formation of MWC 656 (the first Be binary containing a black hole) involves a common envelope phase and a supernova explosion. This result supports the idea that a rapidly rotating Be star can emerge out of a common envelope phase, which is very intriguing because this evolutionary stage is thought to be too fast to lead to significant accretion and spin up of the B star. We predict ∼10–100 of B-BH binaries to currently reside in the Galactic disc, among which around 1/3 contain a Be star, but there is only a small chance to observe a system with parameters resembling MWC 656. If MWC 656 is representative of intrinsic Galactic Be-BH binary population, it may indicate that standard evolutionary theory needs to be revised. This would pose another evolutionary problem in understanding black hole (BH) binaries, with BH X-ray novae formation issue being the prime example. Future evolution of MWC 656 with an ∼5 M⊙ BH and with an ∼13 M⊙ main-sequence companion on an ∼60 d orbit may lead to the formation of a coalescing BH–NS (neutron star) system. The estimated Advanced LIGO/Virgo detection rate of such systems is up to ∼0.2 yr−1. This empirical estimate is a lower limit as it is obtained with only one particular evolutionary scenario, the MWC 656 binary. This is only a third such estimate available (after Cyg X-1 and Cyg X-3), and it lends additional support to the existence of so far undetected BH–NS binaries.
Resumo:
Context. There is growing evidence that a treatment of binarity amongst OB stars is essential for a full theory of stellar evolution. However the binary properties of massive stars - frequency, mass ratio & orbital separation - are still poorly constrained. Aims. In order to address this shortcoming we have undertaken a multiepoch spectroscopic study of the stellar population of the young massive cluster Westerlund 1. In this paper we present an investigation into the nature of the dusty Wolf-Rayet star and candidate binary W239. Methods. To accomplish this we have utilised our spectroscopic data in conjunction with multi-year optical and near-IR photometric observations in order to search for binary signatures. Comparison of these data to synthetic non-LTE model atmosphere spectra were used to derive the fundamental properties of the WC9 primary. Results. We found W239 to have an orbital period of only similar to 5.05 days, making it one of the most compact WC binaries yet identified. Analysis of the long term near-IR lightcurve reveals a significant flare between 2004-6. We interpret this as evidence for a third massive stellar component in the system in a long period (> 6 yr), eccentric orbit, with dust production occuring at periastron leading to the flare. The presence of a near-IR excess characteristic of hot (similar to 1300 K) dust at every epoch is consistent with the expectation that the subset of persistent dust forming WC stars are short (< 1 yr) period binaries, although confirmation will require further observations. Non-LTE model atmosphere analysis of the spectrum reveals the physical properties of the WC9 component to be fully consistent with other Galactic examples. Conclusions. The simultaneous presence of both short period Wolf-Rayet binaries and cool hypergiants within Wd 1 provides compelling evidence for a bifurcation in the post-Main Sequence evolution of massive stars due to binarity. Short period O+OB binaries will evolve directly to the Wolf-Rayet phase, either due to an episode of binary mediated mass loss - likely via case A mass transfer or a contact configuration - or via chemically homogenous evolution. Conversely, long period binaries and single stars will instead undergo a red loop across the HR diagram via a cool hypergiant phase. Future analysis of the full spectroscopic dataset for Wd 1 will constrain the proportion of massive stars experiencing each pathway; hence quantifying the importance of binarity in massive stellar evolution up to and beyond supernova and the resultant production of relativistic remnants.
Resumo:
Guignardia citricarpa, the causal agent of citrus black spot, forms airborne ascospores on decomposing citrus leaves and water-spread conidia on fruits, leaves and twigs. The spatial pattern of diseased fruit in citrus tree canopies was used to assess the importance of ascospores and conidia in citrus black spot epidemics in Sao Paulo State, Brazil. The aggregation of diseased fruit in the citrus tree canopy was quantified by the binomial dispersion index (D) and the binary form of Taylor`s Power Law for 303 trees in six groves. D was significantly greater than 1 in 251 trees. The intercept of the regression line of Taylor`s Power Law was significantly greater than 0 and the slope was not different from 1, implying that diseased fruit was aggregated in the canopy independent of disease incidence. Disease incidence (p) and severity (S) were assessed in 2875 citrus trees. The incidence-severity relationship was described (R-2 = 88.7%) by the model ln(S) = ln(a) + bCLL(p) where CLL = complementary log-log transformation. The high severity at low incidence observed in many cases is also indicative of low distance spread of G. citricarpa spores. For the same level of disease incidence, some trees had most of the diseased fruit with many lesions and high disease severity, whereas other trees had most of the fruit with few lesions and low disease severity. Aggregation of diseased fruit in the trees suggests that splash-dispersed conidia have an important role in increasing the disease in citrus trees in Brazil.
Resumo:
Stellar-mass black holes have all been discovered through X-ray emission, which arises from the accretion of gas from their binary companions (this gas is either stripped from low-mass stars or supplied as winds from massive ones). Binary evolution models also predict the existence of black holes accreting from the equatorial envelope of rapidly spinning Be-type stars (stars of the Be type are hot blue irregular variables showing characteristic spectral emission lines of hydrogen). Of the ~80 Be X-ray binaries known in the Galaxy, however, only pulsating neutron stars have been found as companions. A black hole was formally allowed as a solution for the companion to the Be star MWC 656 (also known as HD 215227), although that was based on a single radial velocity curve of the Be star, a mistaken spectral classification and rough estimates of the inclination angle. Here we report observations of an accretion disk line mirroring the orbit of the Be star. This, together with an improved radial velocity curve of the Be star through fitting sharp Fe II profiles from the equatorial disk, and a refined Be classification (to that of a B1.5-B2 III star), reveals a black hole of 3.8 to 6.9 solar masses orbiting MWC 656, the candidate counterpart of the gamma-ray source AGL J2241+4454. The black hole is X-ray quiescent and fed by a radiatively inefficient accretion flow giving a luminosity less than 1.6 x 10-7 times the Eddington luminosity. This implies that Be binaries with black-hole companions are difficult to detect by conventional X-ray surveys.
Resumo:
This paper explores the construction of female abject beings in Colombian contemporary media and culture comparing a character in the 2010 telenovela Chepe Fortuna named Venezuela, and the cultural representation of Piedad Córdoba. I argue that the construction of these two characters as abject beings is coherent with the dominant discourse of Alvaro Uribe's national project, which relied on a strong nationalist rhetoric based on binary oppositions of the type "we/other." In this context both Chepe Fortuna's Venezuela and Piedad Córdoba are constructed as "other." While Venezuela's abjection is partly effected on the basis of her being fat and black, Córdoba's is on the basis of her being a left-wing politician, and mediated through her being a black female. These two instances evidence an approach to femaleness that goes hand-in-hand with particular understandings of female subjectivity within current post-feminist paradigms.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We report results from a search for gravitational waves produced by perturbed intermediate mass black holes ( IMBH) in data collected by LIGO and Virgo between 2005 and 2010. The search was sensitive to astrophysical sources that produced damped sinusoid gravitational wave signals, also known as ringdowns, with frequency 50 <= f(0)/Hz <= 2000 and decay timescale 0.0001 less than or similar to tau/s less than or similar to 0.1 characteristic of those produced in mergers of IMBH pairs. No significant gravitational wave candidate was detected. We report upper limits on the astrophysical coalescence rates of IMBHs with total binary mass 50 <= M/ M circle dot <= 450 and component mass ratios of either 1: 1 or 4: 1. For systems with total mass 100 <= M/M circle dot <= 150, we report a 90% confidence upper limit on the rate of binary IMBH mergers with nonspinning and equal mass components of 6.9 x 10(-8) Mpc(-3) yr(-1). We also report a rate upper limit for ringdown waveforms from perturbed IMBHs, radiating 1% of their mass as gravitational waves in the fundamental, l = m = 2, oscillation mode, that is nearly three orders of magnitude more stringent than previous results.
Resumo:
This paper reports on an unmodeled, all-sky search for gravitational waves from merging intermediate mass black hole binaries (IMBHB). The search was performed on data from the second joint science run of the LIGO and Virgo detectors (July 2009-October 2010) and was sensitive to IMBHBs with a range up to similar to 200 Mpc, averaged over the possible sky positions and inclinations of the binaries with respect to the line of sight. No significant candidate was found. Upper limits on the coalescence-rate density of nonspinning IMBHBs with total masses between 100 and 450 M-circle dot and mass ratios between 0.25 and 1 were placed by combining this analysis with an analogous search performed on data from the first LIGO-Virgo joint science run (November 2005-October 2007). The most stringent limit was set for systems consisting of two 88 M-circle dot black holes and is equal to 0.12 Mpc(-3) Myr(-1) at the 90% confidence level. This paper also presents the first estimate, for the case of an unmodeled analysis, of the impact on the search range of IMBHB spin configurations: the visible volume for IMBHBs with nonspinning components is roughly doubled for a population of IMBHBs with spins aligned with the binary's orbital angular momentum and uniformly distributed in the dimensionless spin parameter up to 0.8, whereas an analogous population with antialigned spins decreases the visible volume by similar to 20%.
Resumo:
We present the first results of an all-sky search for continuous gravitational waves from unknown spinning neutron stars in binary systems using LIGO and Virgo data. Using a specially developed analysis program, the TwoSpect algorithm, the search was carried out on data from the sixth LIGO science run and the second and third Virgo science runs. The search covers a range of frequencies from 20 Hz to 520 Hz, a range of orbital periods from 2 to similar to 2,254 h and a frequency-and period-dependent range of frequency modulation depths from 0.277 to 100 mHz. This corresponds to a range of projected semimajor axes of the orbit from similar to 0.6 x 10(-3) ls to similar to 6,500 ls assuming the orbit of the binary is circular. While no plausible candidate gravitational wave events survive the pipeline, upper limits are set on the analyzed data. The most sensitive 95% confidence upper limit obtained on gravitational wave strain is 2.3 x 10(-24) at 217 Hz, assuming the source waves are circularly polarized. Although this search has been optimized for circular binary orbits, the upper limits obtained remain valid for orbital eccentricities as large as 0.9. In addition, upper limits are placed on continuous gravitational wave emission from the low-mass x-ray binary Scorpius X-1 between 20 Hz and 57.25 Hz.
Resumo:
The existence of millisecond pulsars with planet-mass companions in close orbits is challenging from the stellar evolution point of view. We calculate in detail the evolution of binary systems self-consistently, including mass transfer, evaporation, and irradiation of the donor by X-ray feedback, demonstrating the existence of a new evolutionary path leading to short periods and compact donors as required by the observations of PSR J1719-1438. We also point out the alternative of an exotic nature of the companion planet-mass star.