925 resultados para bile salts
Resumo:
Quinuclidine grafted cationic bile salts are forming salted hydrogels. An extensive investigation of the effect of the electrolyte and counterions on the gelation has been envisaged. The special interest of the quinuclidine grafted bile salt is due to its broader experimental range of gelation to study the effect of electrolyte. Rheological features of the hydrogels are typical of enthalpic networks exhibiting a scaling law of the elastic shear modulus with the concentration (scaling exponent 2.2) modeling cellular solids in which the bending modulus is the dominant parameter. The addition of monovalent salt (NaCl) favors the formation of gels in a first range (0.00117 g cm-3 (0.02 M) < TNaCl < 0.04675 g cm-3 (0.8 M)). At larger salt concentrations, the gels become more heterogeneous with nodal zones in the micron scale. Small-angle neutron scattering experiments have been used to characterize the rigid fibers (
Resumo:
The binding of the fluorescent probes 1-anilino-8-naphthalene sulfonate and dansyl cadaverine to the sodium salts of cholic, deoxycholic and dehydrocholic acids has been investigated. Enhanced probe solubilisation accompanies aggregation. Monitoring of fluorescence intensities as a function of bile salt concentration permits the detection of primary micelle formation, as well as secondary association. The transition concentrations obtained by fluorescence are in good agreement with values determined for the critical micelle concentrations, by other methods. Differences in the behaviour of cholate and deoxycholate have been noted. Fluorescence polarisation studies of 1,6-diphenyl-1,3,5-hexatriene solubilised in bile salt micelles suggest a higher microviscosity for the interior of the deoxycholate micelle as compared to cholate. 1H NMR studies of deoxycholate over the range 1–100 mg/ml suggest that micelle formation leads to a greater immobilisation of the C18 and C19 methyl groups as compared to the C21 methyl group. Well resolved 13C resonances are observed for all three steroids even at high concentration. Both fluorescence and NMR studies confirm that dehydrocholate does not aggregate.
Resumo:
Giardiasis, currently considered a neglected disease, is caused by the intestinal protozoan parasite Giardia duodenalis and is widely spread in human as well as domestic and wild animals. The lack of appropriate medications and the spread of resistant parasite strains urgently call for the development of novel therapeutic strategies. Host microbiota or certain probiotic strains have the capacity to provide some protection against giardiasis. By combining biological and biochemical approaches, we have been able to decipher a molecular mechanism used by the probiotic strain Lactobacillus johnsonii La1 to prevent Giardia growth in vitro. We provide evidence that the supernatant of this strain contains active principle(s) not directly toxic to Giardia but able to convert non-toxic components of bile into components highly toxic to Giardia. By using bile acid profiling, these components were identified as deconjugated bile-salts. A bacterial bile-salt-hydrolase of commercial origin was able to mimic the properties of the supernatant. Mass spectrometric analysis of the bacterial supernatant identified two of the three bile-salt-hydrolases encoded in the genome of this probiotic strain. These observations document a possible mechanism by which L. johnsonii La1, by secreting, or releasing BSH-like activity(ies) in the vicinity of replicating Giardia in an environment where bile is present and abundant, can fight this parasite. This discovery has both fundamental and applied outcomes to fight giardiasis, based on local delivery of deconjugated bile salts, enzyme deconjugation of bile components, or natural or recombinant probiotic strains that secrete or release such deconjugating activities in a compartment where both bile salts and Giardia are present.
Resumo:
Rotational dynamics of polarity sensitive fluorescent dyes (ANS and DPH) in a nonpolymertic aqueous gel derived from tripodal cholamide I was studied using ultrafast time-resolved fluorescence technique. Results were compared with that of naturally occurring di- and trihydroxy bile salts. ANS in the gel showed two rotational correlation time (phi) components, 13.2 ns (bound to the hydrophobic region of the gel) and 1.0 ns (free aqueous ANS), whereas DPH showed only one component (4.8 ns). In the sol state, faster rotational motion was observed, both for ANS and DPH. Our data revealed that dyes get encapsulated more tightly in the gel network when compared to the micellar aggregates. ANS has more restrained rotation compared to DPH. This was attributed to the interaction of the sulfonate group of ANS with water molecules and hydrophilic parts of the gelator molecule. No restricted rotation was observed for DPH in the gel state unlike when it is in the gel phase of lipid bilayer.
Resumo:
The paper deals with the collection of gall bladders, isolation of bile and identification of the constituents of the bile salts from different fishes. The yield of bile contents from fresh water fishes rohu, mrigal and catla was compared with that from marine fishes seer, tuna, shark and sardine. Considerable variation in yield was showed between marine and fresh water fish as well as between the species in both groups. It ranged from 0.04 to 0.06% of the body weight of fish in calla, mrigal and rohu. The bile constituents from rohu and mrigal were analysed by thin layer chromatography. The result showed that bile of rohu and mrigal contains mainly taurine derivative of lithocholic acid.
Resumo:
Resistance to high concentrations of bile salts in the human intestinal tract is vital for the survival of enteric bacteria such as Escherichia coli. Although the tripartite AcrAB-TolC efflux system plays a significant role in this resistance, it is purported that other efflux pumps must also be involved. We provide evidence from a comprehensive suite of experiments performed at two different pH values (7.2 and 6.0) that reflect pH conditions that E. coli may encounter in human gut that MdtM, a single-component multidrug resistance transporter of the major facilitator superfamily, functions in bile salt resistance in E. coli by catalysing secondary active transport of bile salts out of the cell cytoplasm. Furthermore, assays performed on a chromosomal ΔacrB mutant transformed with multicopy plasmid encoding MdtM suggested a functional synergism between the single-component MdtM transporter and the tripartite AcrAB-TolC system that results in a multiplicative effect on resistance. Substrate binding experiments performed on purified MdtM demonstrated that the transporter binds to cholate and deoxycholate with micromolar affinity, and transport assays performed on inverted vesicles confirmed the capacity of MdtM to catalyse electrogenic bile salt/H(+) antiport.
Resumo:
The transmembrane proton gradient (ΔpH) is the primary source of energy exploited by secondary active substrate/H+ antiporters to drive the electroneutral transport of substrates across the Escherichia coli (E. coli) inner membrane. Such electroneutral transport results in no net movement of charges across the membrane. The charge on the transported substrate and the stoichiometry of the exchange reaction, however, can result in an electrogenic reaction which is driven by both the ΔpH and the electrical (∆Ψ) components of the proton electrochemical gradient, resulting in a net movement of electrical charges across the membrane. We have shown that the major facilitator superfamily transporter MdtM - a multidrug efflux protein from E. coli that functions physiologically in protection of bacterial cells against bile salts - imparts bile salt resistance to the bacterial cell by coupling the exchange of external protons (H+) to the efflux of bile salts from the cell interior via an electrogenic antiport reaction (Paul et al., 2014). This protocol describes, using fluorometry, how to detect electrogenic antiport activity of MdtM in inverted membrane vesicles of an antiporter-deficient strain of E. coli TO114 cells by measuring transmembrane ∆Ψ. The method exploits changes that occur in the intensity of the fluorescence signal (quenching and dequenching) of the probe Oxonol V in response to changes in membrane potential due to the MdtM-catalysed sodium cholate/H+ exchange reaction. The protocol can be adapted to detect activity of any secondary active antiporter that couples the electrogenic translocation of H+ across a biological membrane to that of its counter-substrate, and may be used to unmask otherwise camouflaged transport activities and physiological roles.
Resumo:
The work described herein is aimed at understanding primary and secondary aggregation of bile salt micelles and how micelles can perform chiral recognition of binapthyl analytes. Previous work with cholate and deoxycholate using micellar electrokinetic chromatography (MEKC) and nuclear magnetic resonance (NMR) has provided insightinto cholate and deoxycholate micelle formation, especially with respect to the critical micelle concentration (CMC). Chiral separations of the model analyte, 1,1â??-binaphthyl-2,2â??-diyl hydrogen phosphate (BNDHP), via cholate (C) and deoxycholate (DC) mediated MEKC separataions previously have shown the DC CMC to be 7-10 mM andthe cholate CMC at 14 mM at ph 12. A second model analyte,1,1â??-binaphthol (BN), was also previously investigated to probe micellar structure, but the MEKC data for this analyte implied a higher CMC, which may be interpreted as secondary aggregation. Thiswork extends the investigation of bile salts to include pulsed field gradient spin echo (PFGSE) NMR experiments being used to gain information about the size and degree of polydispersity of cholate and deoxycholate micelles. Concentrations of cholate below 10mM show a large variation in effective radius likely due to the existence of transient preliminary aggregates. The onset of the primary micelle shows a dramatic increase in effective radius of the micelle in cholate and deoxycholate. In the region of expectedsecondary aggregation a gradual increase of effective radius was observed with cholate; deoxycholate showed a persistent aggregate size in the secondary micelle region that is modulated by the presence of an analyte molecule. Effective radii of cholate anddeoxycholate (individually) were compared with and without R- and S-BNDHP in order to observe the effective radius difference of micelles with and without analyte present. The presence of S-BNDHP consistently resulted in a larger effective aggregate radius incholate and deoxycholate, confirming previous data of the S-BNDHP interacting more with the micelle than R-BNDHP. In total, various NMR techniques, like diffusion NMR can be used to gain a greater understanding of the bile salt micellization process and chiral resolution.
Resumo:
Bile salts are known to aggregate into micelles in biological systems; however, the fundamental structure and dynamics of bile molecule micelle formation are poorly understood. Previous studies have established that the bile salt cholate is capable of performing chirally selective micellar electrokinetic capillary chromatography (MEKC) separations of model racemic binaphthyl compounds 1,1¿-binaphthyl-2,2¿-diyl hydrogen phosphate (R,S-BNDHP) and 1,1¿-bi-2-naphthol (R,S-BN). Nuclear magnetic resonance (NMR) has been established as a complementary technique for understanding chiral selectivity and micelle formation events based on changes in proton chemical shifts of the probe molecules BNDHP and BN as well as of cholate. This work investigated the effects of the probe molecule, the alkali cation identity and temperature on cholate micelle aggregation and MEKC separations of R,S-BN and R,S-BNDHP. The probe molecule was found to mediate micelle formation by MEKC and proton NMR. A low (0.1 mM) concentration of probe was found to have minimal effects on micellization events detected by proton NMR while higher probe concentration (2.5 mM) was found to mediate micellization causing micellization events to occur at lower cholate concentrations. This work also investigated the effects of alkali counterion on chiral separation. Generally, counterions with larger crystal cationic radius were found to cause greater chiral separation power. NMR data suggest that protons near the surface of the cholate micelle are most sensitive to the cation identity, suggesting a model of improved separation based on the cation sterically inhibiting binding of one isomer. Finally, the effect of temperature on MEKC separation was investigated. Separation power of R,S-BN and R,S-BNDHP appeared to increase linearly with temperature for 22.0 mM to 50.0 mM pH 12.0 cholate. In total, these results indicate that cholate aggregation is dependent on multiple conditions. Understanding the roles that these factors play in influencing cholate micellization can inform better separation in MEKC.
Resumo:
The transmembrane transcriptional activators ToxR and TcpP modulate expression of Vibrio cholerae virulence factors by exerting control over toxT, which encodes the cytoplasmic transcriptional activator of the ctx, tcp, and acf virulence genes. However, ToxR, independently of TcpP and ToxT, activates and represses transcription of the genes encoding two outer-membrane porins, OmpU and OmpT. To determine the role of ToxR-dependent porin regulation in V. cholerae pathogenesis, the ToxR-activated ompU promoter was used to drive ompT transcription in a strain lacking OmpU. Likewise, the ToxR-repressed ompT promoter was used to drive ompU transcription in a strain lacking both ToxR and OmpT. This strategy allowed the generation of a toxR+ strain that expresses OmpT in place of OmpU, and a toxR− strain that expresses OmpU in place of OmpT. Growth rates in the presence of bile salts and other anionic detergents were retarded for the toxR+ V. cholerae expressing OmpT in place of OmpU, but increased in toxR− V. cholerae expressing OmpU in place of OmpT. Additionally, the toxR+ V. cholerae expressing OmpT in place of OmpU expressed less cholera toxin and toxin-coregulated pilus, and this effect was shown to be caused by reduced toxT transcription in this strain. Finally, the toxR+ V. cholerae expressing OmpT in place of OmpU was ≈100-fold reduced in its ability to colonize the infant-mouse intestine. Our results indicate that ToxR-dependent modulation of the outer membrane porins OmpU and OmpT is critical for V. cholerae bile resistance, virulence factor expression, and intestinal colonization.
Resumo:
Disruptions to circadian rhythm in mice and humans have been associated with an increased risk of obesity and metabolic syndrome. The gut microbiota is known to be essential for the maintenance of circadian rhythm in the host suggesting a role for microbe-host interactions in the regulation of the peripheral circadian clock. Previous work suggested a role for gut bacterial bile salt hydrolase (BSH) activity in the regulation of host circadian gene expression. Here we demonstrate that unconjugated bile acids, known to be generated through the BSH activity of the gut microbiota, are potentially chronobiological regulators of host circadian gene expression. We utilised a synchronised Caco-2 epithelial colorectal cell model and demonstrated that unconjugated bile acids, but not the equivalent tauro-conjugated bile salts, enhance the expression levels of genes involved in circadian rhythm. In addition oral administration of mice with unconjugated bile acids significantly altered expression levels of circadian clock genes in the ileum and colon as well as the liver with significant changes to expression of hepatic regulators of circadian rhythm (including Dbp) and associated genes (Per2, Per3 and Cry2). The data demonstrate a potential mechanism for microbe-host crosstalk that significantly impacts upon host circadian gene expression. Disruptions to circadian rhythm in mice and humans have been associated with an increased risk of obesity and metabolic syndrome. The gut microbiota is known to be essential for the maintenance of circadian rhythm in the host suggesting a role for microbe-host interactions in the regulation of the peripheral circadian clock. Previous work suggested a role for gut bacterial bile salt hydrolase (BSH) activity in the regulation of host circadian gene expression. Here we demonstrate that unconjugated bile acids, known to be generated through the BSH activity of the gut microbiota, are potentially chronobiological regulators of host circadian gene expression. We utilised a synchronised Caco-2 epithelial colorectal cell model and demonstrated that unconjugated bile acids, but not the equivalent tauro-conjugated bile salts, enhance the expression levels of genes involved in circadian rhythm. In addition oral administration of mice with unconjugated bile acids significantly altered expression levels of circadian clock genes in the ileum and colon as well as the liver with significant changes to expression of hepatic regulators of circadian rhythm (including Dbp) and associated genes (Per2, Per3 and Cry2). The data demonstrate a potential mechanism for microbe-host crosstalk that significantly impacts upon host circadian gene expression.
Resumo:
One of the most important factors determining the development of atherosclerosis is the amount of LDL particles in the circulation. In general, LDL particles are clinically regarded as “bad cholesterol” since these particles get entrapped within the vascular wall, leading to atherosclerosis. Circulating HDL particles are conversely regarded as “good cholesterol” because of their ability to transport cholesterol from peripheral tissues to the liver for secretion as bile salts. Once inside the artery wall LDL particles are engulfed by macrophages, resulting in macrophage foam cells. If the macrophage foam cells are not able to efflux the cholesterol back into the bloodstream, the excessive cholesterol ultimately leads to cell death, and the deposition of cellular debris within the atherosclerotic lesion. The cells ability to secrete cholesterol is mainly dependent on the ABCA1 transporter (ATP-binding cassette transporter A1) which transfers cellular cholesterol to extracellular apoA-I (apolipoprotein A-I) particles, leading to the generation of nascent HDL particles. The process of atherosclerotic plaque development is therefore to a large extent a cellular one, in which the capacity of the macrophages in handling the excessive cholesterol load determines the progression of lesion development. In this work we have studied the cellular mechanisms that regulate the trafficking of LDL-derived cholesterol from endosomal compartments to other parts of the cell. As a basis for the study we have utilized cells from patients with Niemann-Pick type C disease, a genetic disorder resulting from mutations in the NPC1 and NPC2 genes. In these cells, cholesterol is entrapped within the endosomal compartment, and is not available for efflux. By identifying proteins that bypass the cholesterol trafficking defect, we were able to identify the small GTPase Rab8 as an important protein involved in ABCA1 dependent cholesterol efflux. In the study, we show that Rab8 regulates cholesterol efflux in human macrophages by facilitating intracellular cholesterol transport, as well as by regulating the plasma membrane availability of ABCA1. Collectively, these results give new insight in to atherosclerotic lesion development and intracellular cholesterol processing.
Resumo:
Density gradient ultracentrifugation (DGU) has emerged as a promising tool to prepare chirality enriched nanotube samples. Here, we assess the performance of different surfactants for DGU. Bile salts (e.g., sodium cholate (SC), sodium deoxycholate (SDC), and sodium taurodeoxycholate (TDC)) are more effective in individualizing Single Wall Carbon Nanotubes (SWNTs) compared to linear chain surfactants (e.g., sodium dodecylbenzene sulfonate (SDBS) and sodium dodecylsulfate (SDS)) and better suited for DGU. Using SC, a narrower diameter distribution (0.69-0.81 nm) is achieved through a single DGU step on CoMoCAT tubes, when compared to SDC and TDC (0.69-0.89 nm). No selectivity is obtained using SDBS. due to its ineffectiveness in debundling. We assign the reduce selectivity of dihydroxy bile salts (S DC and TDC) in comparison with trihydroxy SC to the formation of secondary micelles. This is determined by the number and position of hydroxyl ( OH) groups on the a-side of the steroid backbone. We also enrich CoMoCAT SWNT in the 0.84-0.92 nm range using the Pluronic F98 triblock copolymer. Mixtures of bile salts (SC) and linear chain surfactants (SOS) are used to enrich metallic and semiconducting laser-ablation grown SWNTs. We demonstrate enrichment of a single chirality, (6,5), combining diameter and metallic versus semiconductillg separation on CoMoCAT samples.
Resumo:
Binaphthol enantiomers could be baseline separated using cholic acid as chiral selector at the concentration of 20 mmol/L. The effects of cholic acid concentration and pH of the buffer on separation were studied. The influence of methanol, acetonitrile, iso-propyl alcohol were also studied.