940 resultados para bilateral teleoperation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

When a task must be executed in a remote or dangerous environment, teleoperation systems may be employed to extend the influence of the human operator. In the case of manipulation tasks, haptic feedback of the forces experienced by the remote (slave) system is often highly useful in improving an operator's ability to perform effectively. In many of these cases (especially teleoperation over the internet and ground-to-space teleoperation), substantial communication latency exists in the control loop and has the strong tendency to cause instability of the system. The first viable solution to this problem in the literature was based on a scattering/wave transformation from transmission line theory. This wave transformation requires the designer to select a wave impedance parameter appropriate to the teleoperation system. It is widely recognized that a small value of wave impedance is well suited to free motion and a large value is preferable for contact tasks. Beyond this basic observation, however, very little guidance exists in the literature regarding the selection of an appropriate value. Moreover, prior research on impedance selection generally fails to account for the fact that in any realistic contact task there will simultaneously exist contact considerations (perpendicular to the surface of contact) and quasi-free-motion considerations (parallel to the surface of contact). The primary contribution of the present work is to introduce an approximate linearized optimum for the choice of wave impedance and to apply this quasi-optimal choice to the Cartesian reality of such a contact task, in which it cannot be expected that a given joint will be either perfectly normal to or perfectly parallel to the motion constraint. The proposed scheme selects a wave impedance matrix that is appropriate to the conditions encountered by the manipulator. This choice may be implemented as a static wave impedance value or as a time-varying choice updated according to the instantaneous conditions encountered. A Lyapunov-like analysis is presented demonstrating that time variation in wave impedance will not violate the passivity of the system. Experimental trials, both in simulation and on a haptic feedback device, are presented validating the technique. Consideration is also given to the case of an uncertain environment, in which an a priori impedance choice may not be possible.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Despite recent advances in artificial intelligence and autonomous robotics, teleoperation can provide distinct benefits in applications requiring real-time human judgement and intuition. However, as robotic systems are increasingly becoming sophisticated and are performing more complex tasks, realizing these benefits requires new approaches to teleoperation. This paper introduces a novel haptic mediator interface for teleoperating mobile robotic platforms that have a variety of manipulators and functions. Identical master-slave bilateral teleoperation of the robotic manipulators is achieved by representing them in virtual reality and by allowing the operator to interact with them using a multipoint haptic device. The operator is also able to command motions to the mobile platform by using a novel haptic interaction metaphor rather than a separate dedicated input device. The presented interaction techniques enable the operator to perform a wide range of control functions and achieve functionality similar to that of conventional teleoperation schemes that use a single haptic interface. The mediator interface is presented, and important considerations such as workspace mapping and scaling are discussed. © 2015 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, we propose a novel control scheme for bilateral teleoperation of n degree-of-freedom (DOF) nonlinear robotic systems with time-varying communication delay. We consider that the human operator contains a constant force on the local manipulator. The local and remote manipulators are coupled using state convergence control scheme. By choosing a Lyapunov-Krasovskii functional, we show that the local-remote teleoperation system is asymptotically stable. It is also shown that, in the case of reliable communication protocols, the proposed scheme guarantees that the remote manipulator tracks the delayed trajectory of the local manipulator. The time delay of communication channel is assumed to be unknown and randomly time varying, but the upper bounds of the delay interval and the derivative of the delay are assumed to be known.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We propose a novel control scheme for bilateral teleoperation of n degree-of-freedom (DOF) nonlinear robotic systems with time-varying communication delay. A major contribution from this work lies in the demonstration that the structure of a state convergence algorithm can be also applied to nth-order nonlinear teleoperation systems. By choosing a Lyapunov Krasovskii functional, we show that the local-remote teleoperation system is asymptotically stable. The time delay of communication channel is assumed to be unknown and randomly time varying, but the upper bounds of the delay interval and the derivative of the delay are assumed to be known.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

While the robots gradually become a part of our daily lives, they already play vital roles in many critical operations. Some of these critical tasks include surgeries, battlefield operations, and tasks that take place in hazardous environments or distant locations such as space missions. ^ In most of these tasks, remotely controlled robots are used instead of autonomous robots. This special area of robotics is called teleoperation. Teleoperation systems must be reliable when used in critical tasks; hence, all of the subsystems must be dependable even under a subsystem or communication line failure. ^ These systems are categorized as unilateral or bilateral teleoperation. A special type of bilateral teleoperation is described as force-reflecting teleoperation, which is further investigated as limited- and unlimited-workspace teleoperation. ^ Teleoperation systems configured in this study are tested both in numerical simulations and experiments. A new method, Virtual Rapid Robot Prototyping, is introduced to create system models rapidly and accurately. This method is then extended to configure experimental setups with actual master systems working with system models of the slave robots accompanied with virtual reality screens as well as the actual slaves. Fault-tolerant design and modeling of the master and slave systems are also addressed at different levels to prevent subsystem failure. ^ Teleoperation controllers are designed to compensate for instabilities due to communication time delays. Modifications to the existing controllers are proposed to configure a controller that is reliable in communication line failures. Position/force controllers are also introduced for master and/or slave robots. Later, controller architecture changes are discussed in order to make these controllers dependable even in systems experiencing communication problems. ^ The customary and proposed controllers for teleoperation systems are tested in numerical simulations on single- and multi-DOF teleoperation systems. Experimental studies are then conducted on seven different systems that included limited- and unlimited-workspace teleoperation to verify and improve simulation studies. ^ Experiments of the proposed controllers were successful relative to the customary controllers. Overall, by employing the fault-tolerance features and the proposed controllers, a more reliable teleoperation system is possible to design and configure which allows these systems to be used in a wider range of critical missions. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

While the robots gradually become a part of our daily lives, they already play vital roles in many critical operations. Some of these critical tasks include surgeries, battlefield operations, and tasks that take place in hazardous environments or distant locations such as space missions. In most of these tasks, remotely controlled robots are used instead of autonomous robots. This special area of robotics is called teleoperation. Teleoperation systems must be reliable when used in critical tasks; hence, all of the subsystems must be dependable even under a subsystem or communication line failure. These systems are categorized as unilateral or bilateral teleoperation. A special type of bilateral teleoperation is described as force-reflecting teleoperation, which is further investigated as limited- and unlimited-workspace teleoperation. Teleoperation systems configured in this study are tested both in numerical simulations and experiments. A new method, Virtual Rapid Robot Prototyping, is introduced to create system models rapidly and accurately. This method is then extended to configure experimental setups with actual master systems working with system models of the slave robots accompanied with virtual reality screens as well as the actual slaves. Fault-tolerant design and modeling of the master and slave systems are also addressed at different levels to prevent subsystem failure. Teleoperation controllers are designed to compensate for instabilities due to communication time delays. Modifications to the existing controllers are proposed to configure a controller that is reliable in communication line failures. Position/force controllers are also introduced for master and/or slave robots. Later, controller architecture changes are discussed in order to make these controllers dependable even in systems experiencing communication problems. The customary and proposed controllers for teleoperation systems are tested in numerical simulations on single- and multi-DOF teleoperation systems. Experimental studies are then conducted on seven different systems that included limited- and unlimited-workspace teleoperation to verify and improve simulation studies. Experiments of the proposed controllers were successful relative to the customary controllers. Overall, by employing the fault-tolerance features and the proposed controllers, a more reliable teleoperation system is possible to design and configure which allows these systems to be used in a wider range of critical missions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Independientemente de la existencia de técnicas altamente sofisticadas y capacidades de cómputo cada vez más elevadas, los problemas asociados a los robots que interactúan con entornos no estructurados siguen siendo un desafío abierto en robótica. A pesar de los grandes avances de los sistemas robóticos autónomos, hay algunas situaciones en las que una persona en el bucle sigue siendo necesaria. Ejemplos de esto son, tareas en entornos de fusión nuclear, misiones espaciales, operaciones submarinas y cirugía robótica. Esta necesidad se debe a que las tecnologías actuales no pueden realizar de forma fiable y autónoma cualquier tipo de tarea. Esta tesis presenta métodos para la teleoperación de robots abarcando distintos niveles de abstracción que van desde el control supervisado, en el que un operador da instrucciones de alto nivel en la forma de acciones, hasta el control bilateral, donde los comandos toman la forma de señales de control de bajo nivel. En primer lugar, se presenta un enfoque para llevar a cabo la teleoperación supervisada de robots humanoides. El objetivo es controlar robots terrestres capaces de ejecutar tareas complejas en entornos de búsqueda y rescate utilizando enlaces de comunicación limitados. Esta propuesta incorpora comportamientos autónomos que el operador puede utilizar para realizar tareas de navegación y manipulación mientras se permite cubrir grandes áreas de entornos remotos diseñados para el acceso de personas. Los resultados experimentales demuestran la eficacia de los métodos propuestos. En segundo lugar, se investiga el uso de dispositivos rentables para telemanipulación guiada. Se presenta una aplicación que involucra un robot humanoide bimanual y un traje de captura de movimiento basado en sensores inerciales. En esta aplicación, se estudian las capacidades de adaptación introducidas por el factor humano y cómo estas pueden compensar la falta de sistemas robóticos de alta precisión. Este trabajo es el resultado de una colaboración entre investigadores del Biorobotics Laboratory de la Universidad de Harvard y el Centro de Automática y Robótica UPM-CSIC. En tercer lugar, se presenta un nuevo controlador háptico que combina velocidad y posición. Este controlador bilateral híbrido hace frente a los problemas relacionados con la teleoperación de un robot esclavo con un gran espacio de trabajo usando un dispositivo háptico pequeño como maestro. Se pueden cubrir amplias áreas de trabajo al cambiar automáticamente entre los modos de control de velocidad y posición. Este controlador háptico es ideal para sistemas maestro-esclavo con cinemáticas diferentes, donde los comandos se transmiten en el espacio de la tarea del entorno remoto. El método es validado para realizar telemanipulación hábil de objetos con un robot industrial. Por último, se introducen dos contribuciones en el campo de la manipulación robótica. Por un lado, se presenta un nuevo algoritmo de cinemática inversa, llamado método iterativo de desacoplamiento cinemático. Este método se ha desarrollado para resolver el problema cinemático inverso de un tipo de robot de seis grados de libertad donde una solución cerrada no está disponible. La eficacia del método se compara con métodos numéricos convencionales. Además, se ha diseñado una taxonomía robusta de agarres que permite controlar diferentes manos robóticas utilizando una correspondencia, basada en gestos, entre los espacios de trabajo de la mano humana y de la mano robótica. El gesto de la mano humana se identifica mediante la lectura de los movimientos relativos del índice, el pulgar y el dedo medio del usuario durante las primeras etapas del agarre. ABSTRACT Regardless of the availability of highly sophisticated techniques and ever increasing computing capabilities, the problems associated with robots interacting with unstructured environments remains an open challenge. Despite great advances in autonomous robotics, there are some situations where a humanin- the-loop is still required, such as, nuclear, space, subsea and robotic surgery operations. This is because the current technologies cannot reliably perform all kinds of task autonomously. This thesis presents methods for robot teleoperation strategies at different levels of abstraction ranging from supervisory control, where the operator gives high-level task actions, to bilateral teleoperation, where the commands take the form of low-level control inputs. These strategies contribute to improve the current human-robot interfaces specially in the case of slave robots deployed at large workspaces. First, an approach to perform supervisory teleoperation of humanoid robots is presented. The goal is to control ground robots capable of executing complex tasks in disaster relief environments under constrained communication links. This proposal incorporates autonomous behaviors that the operator can use to perform navigation and manipulation tasks which allow covering large human engineered areas of the remote environment. The experimental results demonstrate the efficiency of the proposed methods. Second, the use of cost-effective devices for guided telemanipulation is investigated. A case study involving a bimanual humanoid robot and an Inertial Measurement Unit (IMU) Motion Capture (MoCap) suit is introduced. Herein, it is corroborated how the adaptation capabilities offered by the human-in-the-loop factor can compensate for the lack of high-precision robotic systems. This work is the result of collaboration between researchers from the Harvard Biorobotics Laboratory and the Centre for Automation and Robotics UPM-CSIC. Thirdly, a new haptic rate-position controller is presented. This hybrid bilateral controller copes with the problems related to the teleoperation of a slave robot with large workspace using a small haptic device as master. Large workspaces can be covered by automatically switching between rate and position control modes. This haptic controller is ideal to couple kinematic dissimilar master-slave systems where the commands are transmitted in the task space of the remote environment. The method is validated to perform dexterous telemanipulation of objects with a robotic manipulator. Finally, two contributions for robotic manipulation are introduced. First, a new algorithm, the Iterative Kinematic Decoupling method, is presented. It is a numeric method developed to solve the Inverse Kinematics (IK) problem of a type of six-DoF robotic arms where a close-form solution is not available. The effectiveness of this IK method is compared against conventional numerical methods. Second, a robust grasp mapping has been conceived. It allows to control a wide range of different robotic hands using a gesture based correspondence between the human hand space and the robotic hand space. The human hand gesture is identified by reading the relative movements of the index, thumb and middle fingers of the user during the early stages of grasping.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Teleoperation has been used in many applications, allowing a human operator to remotely control a robotic system in order to perform a particular task. Recently haptic teleoperation has focused mainly on improving performance in remote manipulation tasks, however the haptic approach offers similar advantages for teleoperative control of the motion of a mobile robot. This paper describes a prototype system designed to facilitate haptic teleoperation of an all-terrain, articulated track mobile robot. This system utilizes a multi-modal user interface intended to improve operator immersion, reduce operator overload and improve teleoperative task performance. The system architecture facilitates implementation of an application-specific haptic augmentation algorithm in order to improve operator performance in challenging real-world tasks. The contributions of this work can be categorized as the custom mobile platform, teleoperator interface and haptic augmentation strategy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work, we study the bilateral control of a nonlinear teleoperator system with constant delay, proposes a control strategy by state convergence, which directly connect the local and remote manipulator through feedback signals of position and speed. The control signal allows the remote manipulator follow the local manipulator through the state convergence even if it has a delay in the communication channel. The bilateral control of the teleoperator system considers the case when the human operator applies a constant force on the local manipulator and when the interaction of the remote manipulator with the environment is considered passive. The stability analysis is performed using functional of Lyapunov-Krasovskii, it showed that using a control algorithm by state convergence for the case with constant delay, the nonlinear local and remote teleoperation system is asymptotically stable, also speeds converge to zero and position tracking is achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel Neuropredictive Teleoperation (NPT) Scheme is presented. The design results from two key ideas: the exploitation of the measured or estimated neural input to the human arm or its electromyograph (EMG) as the system input and the employment of a predictor of the arm movement, based on this neural signal and an arm model, to compensate for time delays in the system. Although a multitude of such models, as well as measuring devices for the neural signals and the EMG, have been proposed, current telemanipulator research has only been considering highly simplified arm models. In the present design, the bilateral constraint that the master and slave are simultaneously compliant to each other's state (equal positions and forces) is abandoned, thus obtaining a simple to analyzesuccession of only locally controlled modules, and a robustness to time delays of up to 500 ms. The proposed designs were inspired by well established physiological evidence that the brain, rather than controlling the movement on-line, programs the arm with an action plan of a complete movement, which is then executed largely in open loop, regulated only by local reflex loops. As a model of the human arm the well-established Stark model is employed, whose mathematical representation is modified to make it suitable for an engineering application. The proposed scheme is however valid for any arm model. BIBO-stability and passivity results for a variety of local control laws are reported. Simulation results and comparisons with traditional designs also highlight the advantages of the proposed design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Presents a method for model based bilateral control of master-slave arm with time delay between master and slave arms, where the system supports cooperative action between manual and automatic modes. The method realises efficiencies in master-slave arm control with the simplicities of a computer and the flexibility of a skilled human operator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis deals with the studies on the Cooperative Teleoperation Systems. The literature on cooperative teleoperation did not take into account control architectures composed of pairs of wave-based bilateral teleoperators operating in a shared environment. In this work The author two cooperative control schemes based on wave variables by considering two pairs of single-master/single-slave devices collaborating to carry out operations in a shared remote environment are proposed. Such architectures have been validated both with simulations and experimental tests. Ch. 2 introduces a description of the two control architectures proposed and presents some simulation results where the cooperative teleoperation systems evolve in free space and in contact with a stiff wall. In the Ch. 3 some experimental results which confirm the positive results of the control schemes are illustred. Such results have been achieved by using a prototype custom built at Laboratory of Automaiton and Robotics of University of Bologna, which is also illustrated in this chapter. In Ch. 4 the problem of defining proper tools and procedures for an analysis, and possibly a comparison, of the performances of cooperative teleoperation systems is addressed. In particular, a novel generalization of criteria adopted for classical (i.e. one master-one slave) teleoperators is presented and illustrated on the basis of the force-position and the position-position cooperative control schemes proposed in Ch. 2, both from a transparency and stability point of view, and by assuming a null time delay in the communication channel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the design and evaluation of a new platform created in order to improve the learning experience of bilateral control algorithms in teleoperation. This experimental platform, developed at Universidad Politécnica de Madrid, is used by the students of the Master on Automation and Robotics in the practices of the subject called “Telerobotics and Teleoperation”. The main objective is to easily implement different control architectures in the developed platform and evaluate them under different conditions to better understand the main advantages and drawbacks of each control scheme. So, the student’s tasks are focused on adjusting the control parameters of the predefined controllers and designing new ones to analyze the changes in the behavior of the whole system. A description of the subject, main topics and the platform constructed are detailed in the paper. Furthermore, the methodology followed in the practices and the bilateral control algorithms are presented. Finally, the results obtained in the experiments with students are also shown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La telepesencia combina diferentes modalidades sensoriales, incluyendo, entre otras, la visual y la del tacto, para producir una sensación de presencia remota en el operador. Un elemento clave en la implementación de sistemas de telepresencia para permitir una telemanipulación del entorno remoto es el retorno de fuerza. Durante una telemanipulación, la energía mecánica es transferida entre el operador humano y el entorno remoto. En general, la energía es una propiedad de los objetos físicos, fundamental en su mutual interacción. En esta interacción, la energía se puede transmitir entre los objetos, puede cambiar de forma pero no puede crearse ni destruirse. En esta tesis, se aplica este principio fundamental para derivar un nuevo método de control bilateral que permite el diseño de sistemas de teleoperación estables para cualquier arquitectura concebible. El razonamiento parte del hecho de que la energía mecánica insertada por el operador humano en el sistema debe transferirse hacia el entorno remoto y viceversa. Tal como se verá, el uso de la energía como variable de control permite un tratamiento más general del sistema que el control convencional basado en variables específicas del sistema. Mediante el concepto de Red de Potencia de Retardo Temporal (RPRT), el problema de definir los flujos de energía en un sistema de teleoperación es solucionado con independencia de la arquitectura de comunicación. Como se verá, los retardos temporales son la principal causa de generación de energía virtual. Este hecho se observa con retardos a partir de 1 milisegundo. Esta energía virtual es añadida al sistema de forma intrínseca y representa la causa principal de inestabilidad. Se demuestra que las RPRTs son transportadoras de la energía deseada intercambiada entre maestro y esclavo pero a la vez generadoras de energía virtual debido al retardo temporal. Una vez estas redes son identificadas, el método de Control de Pasividad en el Dominio Temporal para RPRTs se propone como mecanismo de control para asegurar la pasividad del sistema, y as__ la estabilidad. El método se basa en el simple hecho de que esta energía virtual debido al retardo debe transformarse en disipación. As__ el sistema se aproxima al sistema deseado, donde solo la energía insertada desde un extremo es transferida hacia el otro. El sistema resultante presenta dos cualidades: por un lado la estabilidad del sistema queda garantizada con independencia de la arquitectura del sistema y del canal de comunicación; por el otro, el rendimiento es maximizado en términos de fidelidad de transmisión energética. Los métodos propuestos se sustentan con sistemas experimentales con diferentes arquitecturas de control y retardos entre 2 y 900 ms. La tesis concluye con un experimento que incluye una comunicación espacial basada en el satélite geoestacionario ASTRA. ABSTRACT Telepresence combines different sensorial modalities, including vision and touch, to produce a feeling of being present in a remote location. The key element to successfully implement a telepresence system and thus to allow telemanipulation of a remote environment is force feedback. In a telemanipulation, mechanical energy must convey from the human operator to the manipulated object found in the remote environment. In general, energy is a property of all physical objects, fundamental to their mutual interactions in which the energy can be transferred among the objects and can change form but cannot be created or destroyed. In this thesis, we exploit this fundamental principle to derive a novel bilateral control mechanism that allows designing stable teleoperation systems with any conceivable communication architecture. The rationale starts from the fact that the mechanical energy injected by a human operator into the system must be conveyed to the remote environment and Vice Versa. As will be seen, setting energy as the control variable allows a more general treatment of the controlled system in contrast to the more conventional control of specific systems variables. Through the Time Delay Power Network (TDPN) concept, the issue of defining the energy flows involved in a teleoperation system is solved with independence of the communication architecture. In particular, communication time delays are found to be a source of virtual energy. This fact is observed with delays starting from 1 millisecond. Since this energy is added, the resulting teleoperation system can be non-passive and thus become unstable. The Time Delay Power Networks are found to be carriers of the desired exchanged energy but also generators of virtual energy due to the time delay. Once these networks are identified, the Time Domain Passivity Control approach for TDPNs is proposed as a control mechanism to ensure system passivity and therefore, system stability. The proposed method is based on the simple fact that this intrinsically added energy due to the communication must be transformed into dissipation. Then the system becomes closer to the ambitioned one, where only the energy injected from one end of the system is conveyed to the other one. The resulting system presents two benefits: On one hand, system stability is guaranteed through passivity independently from the chosen control architecture and communication channel; on the other, performance is maximized in terms of energy transfer faithfulness. The proposed methods are sustained with a set of experimental implementations using different control architectures and communication delays ranging from 2 to 900 milliseconds. An experiment that includes a communication Space link based on the geostationary satellite ASTRA concludes this thesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we proposes a control strategy that allows the remote manipulator follow the local manipulator through the state convergence even if it has a delay in the communication channel. The bilateral control of the teleoperator system considers the case were the human operator applies a constant force on the local manipulator and when the interaction of the remote manipulator with the environment is considered passive. The stability analysis was performed using Lyapunov- Krasovskii functional, it showed for the case with constant delay, that using a proposed control algorithm by state convergence resulted in asymptotically stable, local and remote the nonlinear teleoperation system.