3 resultados para bicluster


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Accumulated biological research outcomes show that biological functions do not depend on individual genes, but on complex gene networks. Microarray data are widely used to cluster genes according to their expression levels across experimental conditions. However, functionally related genes generally do not show coherent expression across all conditions since any given cellular process is active only under a subset of conditions. Biclustering finds gene clusters that have similar expression levels across a subset of conditions. This paper proposes a seed-based algorithm that identifies coherent genes in an exhaustive, but efficient manner. Methods In order to find the biclusters in a gene expression dataset, we exhaustively select combinations of genes and conditions as seeds to create candidate bicluster tables. The tables have two columns: (a) a gene set, and (b) the conditions on which the gene set have dissimilar expression levels to the seed. First, the genes with less than the maximum number of dissimilar conditions are identified and a table of these genes is created. Second, the rows that have the same dissimilar conditions are grouped together. Third, the table is sorted in ascending order based on the number of dissimilar conditions. Finally, beginning with the first row of the table, a test is run repeatedly to determine whether the cardinality of the gene set in the row is greater than the minimum threshold number of genes in a bicluster. If so, a bicluster is outputted and the corresponding row is removed from the table. Repeating this process, all biclusters in the table are systematically identified until the table becomes empty. Conclusions This paper presents a novel biclustering algorithm for the identification of additive biclusters. Since it involves exhaustively testing combinations of genes and conditions, the additive biclusters can be found more readily.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les simulations ont été implémentées avec le programme Java.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biclustering is simultaneous clustering of both rows and columns of a data matrix. A measure called Mean Squared Residue (MSR) is used to simultaneously evaluate the coherence of rows and columns within a submatrix. In this paper a novel algorithm is developed for biclustering gene expression data using the newly introduced concept of MSR difference threshold. In the first step high quality bicluster seeds are generated using K-Means clustering algorithm. Then more genes and conditions (node) are added to the bicluster. Before adding a node the MSR X of the bicluster is calculated. After adding the node again the MSR Y is calculated. The added node is deleted if Y minus X is greater than MSR difference threshold or if Y is greater than MSR threshold which depends on the dataset. The MSR difference threshold is different for gene list and condition list and it depends on the dataset also. Proper values should be identified through experimentation in order to obtain biclusters of high quality. The results obtained on bench mark dataset clearly indicate that this algorithm is better than many of the existing biclustering algorithms