983 resultados para benthos
Resumo:
A summary of the results from the study of benthos of lakes and reservoirs in Spain is provided, with a list of the species found to date. Spanish natural lakes are smaller than European lakes; the largest is Lake Sanabria, of glacial origin, which is 3 Km long and half a kilorneter wide. Many are very small and situated in the mountains; more than 200 hundred have been recorded in Spain, but only in Lake Sanabria and Lake Banyoles have the benthos been studied. Lake Sanabria is a cold oligotrophic, monomictic lake with oxygen always present in the deepest zones. Its fauna is similar to that of other central European lakes, with Mici.opsectra c.orztractu (a chironomid) as the dominan1 species. Lake Banyoles is a karstic, monomictic and multibasin lake; despite the low primary productivity, due to the abundante of sulphate in the water, the allochthonous inflow of organic matter and the inflow of water from bottom springs, the profunda1 environinent is very stressing for benthic fauna. Very low oxygen concentrations and high sulphide content in the water and sediments dueto meromixis mean that only the larva of the dipteran Chaohoi.lcs flai7icans was present in one of the 5 basins of the lake. In other basins, when oxygen is available (no meromixis), the fauna is similar to that of tlie inineralized lakes of the Aegean region and some lakes in central Italia. On the other hand, preliminary data from the Pyrenean lakes and from Sierra Nevada ponds reveal no differences with northern cold lakes. Tlie largest lakes in Spain are the reservoirs. There are nearly 1000 and data are available on 100 of them, including the kargest. In addition to oxygen and sulphide content in the bottom waters, water level fluctuation and high sedimentation rates are disturbance factors that prevented the organization of the community. Allochthonous inputs of organic matter are also an important factor both in the reservoirs and also in the small, oligotrophic lakes like Banyoles and Sanabria. As a result the meiofaunal loop is very important in many of the Spanish water bodies . For this reason the natural lakes and reservoirs of Spain are dominated by Oligochaeta, small crustaceans and the microcarnivore chironomids (such as Procladi~ls, Cladopelma and Mi(,rnc.hil-onnmus) that feed on these meoifaunal elements. The phytophagous chironomids, like Chironomus, are only abundan1 in the shallow areas of mesotrophic and eutrophic reservoirs. This situation makes it difficult to apply the typological system of SAETHER which predicts with some confidence only the benthic communities of Spanish natural lakes above 1500 m in the Pyrenees or the ponds above 2000 m in Sierra Nevada mountains. Higher temperatures (which originate a longer stratification period), the presence of sulphate in the waters of the eastern part of Spain and high inputs of sediments and allochthonous organic matter seem to be the factors that originated the differences between the benthic profunda1 faunas of Spanish lakes and reservoirs and those of the temperate lakes of north and central Europe.
Resumo:
Department of Marine Biology,Microbiology and Biochemistry,Cochin University of Science and Technology
Resumo:
Considerable number of factories and related establishments forming an industrial complex are located in the upper reaches of the estuary from Varapuzha about 10km from cochin barmouth to Alwaye while lower down are the retting grounds at Vaduthala and nearby places at about 5km from the barmouth. Muncipal wastes from the city population of over 5 lakhs effluents and solid waste from several fish processing factories and other land washings around Willington island reach the estuary move near its lower reaches close to the barmouth. Cochin estuary is the biggest in the state providing water front for the largest number of industries from the small retting grounds of Vaduthala to the huge fertilizer factories of Udyogamandal and receiving the highest quantity of town sewage and land drainage. The estuary contributes itself as nursery ground for shrimps and related fishery as well. Study of this estuary therefore contributes to a typical environment as regards to pollution problems in the tropics and hence the scope of the present investigation
Resumo:
For testing purpose only
Resumo:
A thorough census of Admiralty Bay benthic biodiversity was completed through the synthesis of data, acquired from more than 30 years of observations. Most of the available records arise from successive Polish and Brazilian Antarctic expeditions organized since 1977 and 1982, respectively, but also include new data from joint collecting efforts during the International Polar Year (2007-2009). Geological and hydrological characteristics of Admiralty Bay and a comprehensive species checklist with detailed data on the distribution and nature of the benthic communities are provided. Approximately 1300 species of benthic organisms (excluding bacteria, fungi and parasites) were recorded from the bay`s entire depth range (0-500 m). Generalized classifications and the descriptions of soft-bottom and hard-bottom invertebrate communities are presented. A time-series analysis showed seasonal and interannual changes in the shallow benthic communities, likely to be related to ice formation and ice melt within the bay. As one of the best studied regions in the maritime Antarctic Admiralty Bay represents a legacy site, where continued, systematically integrated data sampling can evaluate the effects of climate change on marine life. Both high species richness and high assemblage diversity of the Admiralty Bay shelf benthic community have been documented against the background of habitat heterogeneity. (C) 2010 Elsevier Ltd. All rights reserved.