992 resultados para benguela upwelling
Resumo:
Abundances of organic carbon, sulfur, and reactive iron in sediments of three upwelling environments (Peru, Oman and Benguela) suggest that organic carbon/reduced sulfur ratios (C/S-ratios) in this category of marine sediments deviate considerably from previously established empirical ratios in normal marine sediments. To clarify the discrepancies, we investigated those components of the diagenetic system that limit the formation of pyrite: sulfate concentrations and reduction rates in pore waters, availability of reactive iron, and the quantity and quality of organic matter. All three limitations are evident in our sample pools. The results suggest that C/S-ratios in recent and fossil marine sediments rich in organic matter may be unsuitable as paleoenvironmental indicators.
Resumo:
We present alkenone-derived Sea Surface Temperature (SST) records from three marine cores collected within the southern Benguela Upwelling System (BUS) spanning the last 3 ka. The SST evolution over the last 3 millennia is marked by aperiodic millennial-scale oscillations that broadly correspond to climatic anomalies identified over the North Atlantic region. The BUS SST data further suggest cooling and warming trends opposite to the temperature evolution in the Moroccan upwelling region and in Antarctica. In contrast, the last decades are marked by a cooling of unprecedented magnitude in both the Benguela and Moroccan upwelling systems, which is not observed in the Antarctic record. These contrasted responses in Atlantic upwelling systems triggered by natural and anthropogenic forcings shed light on how different climatic mechanisms are mediated by ocean-atmosphere interactions and transmitted to the geological records of past and present climate changes.
Resumo:
Nitrogen fixation data from the cruise number MSM18/5 with research vessel "Maria S. Merian" from 22.08.-20.09.2011 (from Walvis Bay to Walvis Bay) in front of Angola and northern Namibia. Samples taken by CTD- rosette sampler from different depths and incubated in glass bottles (535 ml) at light intensities that resemble the in situ light intensities of the sampling depth after 15N2 gas was injected to the sample. After the incubation time of 6 hours, the complete bottle content was filtered onto a pre-combusted Whatman GF/F filter. Filters were frozen, transported to the institute on dry ice and measured in a mass spectrometer for Delta 15N. The principle of the method was described by Montoya et al. (1996) and calculation was done according to their spread sheet. From the data of the single depths, the nitrogen fixation per square meter within the upper 40 m of the water column was calculated. The methods are described in detail in a paper submitted by Wasmund et al. in 2014 to be printed in 2015. Some results are surprisingly below zero. This occurs if the Delta 15N of the blank is higher than the measurement after incubation. It indicates that no nitrogen fixation occurred. Due to natural variability, the variability of the nitrogen fixation data is high. In an overall estimate, also over several cruises, negative and positive values compensate more or less, suggesting that nitrogen fixation is insignificant in the waters in front of northern Namibia and southern Angola.
Resumo:
Ichthyoplankton density (fish eggs and larvae) and bulk zooplankton biomass in January/February 2011 were determined for 38 stations in the northern Benguela upwelling system, based on oblique Multinet hauls during the FS Maria S. Merian MSM17/3 cruise. A HYDROBIOS Multinet, type Midi (0.25 m**2 mouth area) was equipped with five nets of 500 µm-mesh size, temperature and oxygen probes, and an inner and outer flow meter to monitor the net's trajectory (for volume filtered calculations) as well as net clogging. The Multinet was handled over the side, towed horizontally at 2 knots. Winch speed when fearing was 0.5 or 0.3 m/s, heaving velocity 0.2 - 0.3 m/s. The Multinet was towed obliquely at 38 stations sampling the upper 200 m of the water column, which were divided into five different depth strata after inspection of temperature and oxygen concentration depth profiles. Ichthyoplankton densities and zooplankton biomass were calculated for each depth stratum (=single net) from total abundance and the volume of water filtered [individuals per m**3 and g wet weight per m**3, respectively]. In addition, densities and biomass were integrated over the area for each station [individuals per m**2], as sum of calculations for each net: Sum ([individuals per m**3]*Delta (depth bot[m]-depth top [m]).
Resumo:
Ichthyoplankton density (fish eggs and larvae) and bulk zooplankton biomass in October 2011 were determined for 22 stations in the northern Benguela upwelling system, based on oblique Multinet hauls during the FS Maria S. Merian MSM19/1b cruise. A HYDROBIOS Multinet, type Midi (0.25 m**2 mouth area) was equipped with five nets of 500 µm-mesh size, temperature and oxygen probes, and an inner and outer flow meter to monitor the net's trajectory (for volume filtered calculations) as well as net clogging. The Multinet was handled over the side, towed horizontally at 2 knots. Winch speed when fearing was 0.5 or 0.3 m/s, heaving velocity 0.2 - 0.3 m/s. The Multinet was towed obliquely at 22 stations sampling the upper 200 m of the water column, which were divided into five different depth strata after inspection of temperature and oxygen concentration depth profiles. Ichthyoplankton densities and zooplankton biomass were calculated for each depth stratum (=single net) from total abundance and the volume of water filtered [individuals per m**3 and g wet weight per m**3, respectively]. In addition, densities and biomass were integrated over the area for each station [individuals per m**2], as sum of calculations for each net: Sum ([individuals per m**3]*Delta (depth bot[m]-depth top [m]).