969 resultados para behaviour ecology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Communication is important for social and other behavioural interactions in most marine mammal species. The bottlenose dolphin (Tursiops truncatus, Montagu, 1821) is a highly social species that use whistles as communication calls to express identity and to initiate and maintain contact between socially interactive individuals. In this thesis, the degree of variability in whistle behaviour and whistle characteristics was examined between different habitats on a range of spatial scales. The whistle characteristics that best discriminated between different communities were investigated, along with exploration of whistle variation in relation to habitat type, levels of social interaction and relatedness. Finally, the use and variability of individually distinctive calls (signature whistles) within and between Irish and US waters were also examined. Relatively high levels of whistle variation were found within a genetically and socially isolated population of dolphins in the Shannon Estuary, reflecting the need for individual identification and distinctive whistles in a population with long term site fidelity and high levels of social cohesion. Variation between reproductively separate communities in Irish waters was relatively small except between animals in inshore compared with continental shelf waters. The greatest differences in whistle structure overall were evident between dolphins using inshore and offshore US waters, likely reflecting social isolation of the two distinct ecotypes that occur in these waters but also variation in behaviour or habitat conditions. Variation found among inshore communities in US waters reflected similarities in habitat use and levels of social interaction. These findings suggest that vocal variation is socially mediated, behaviourally maintained and dependent on levels of social contact between individuals. The findings contribute to our understanding of the interaction of factors influencing vocalisation behaviour in this behaviourally complex and ecologically plastic species.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Apis cerana Fabricius is endemic to most of Asia, where it has been used for honey production and pollination services for thousands of years. Since the 1980s, A. cerana has been introduced to areas outside its natural range (namely New Guinea, the Solomon Islands, and Australia), which sparked fears that it may become a pest species that could compete with, and negatively affect, native Australian fauna and flora, as well as commercially kept A. mellifera and commercial crops. This literature review is a response to these concerns and reviews what is known about the ecology and behaviour of A. cerana. Differences between temperate and tropical strains of A. cerana are reviewed, as are A. cerana pollination, competition between A. cerana and A. mellifera, and the impact and control strategies of introduced A. cerana, with a particular focus on gaps of current knowledge.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Synchronising bushcricket males achieve synchrony by delaying their chirps in response to calling neighbours. In multi-male choruses, males that delay chirps in response to all their neighbours would remain silent most of the time and be unable to attract mates. This problem could be overcome if the afferent auditory system exhibited selective attention, and thus a male interacted only with a subset of neighbours. We investigated whether individuals of the bushcricket genus Mecopoda restricted their attention to louder chirps neurophysiologically, behaviourally and through spacing. We found that louder leading chirps were preferentially represented in the omega neuron but the representation of softer following chirps was not completely abolished. Following chirps that were 20 dB louder than leading chirps were better represented than leading chirps. During acoustic interactions, males synchronised with leading chirps even when the following chirps were 20 dB louder. Males did not restrict their attention to louder chirps during interactions but were affected by all chirps above a particular threshold. In the field, we found that males on average had only one or two neighbours whose calls were above this threshold. Selective attention is thus achieved in this bushcricket through spacing rather than neurophysiological filtering of softer signals.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Synchronising bushcricket males achieve synchrony by delaying their chirps in response to calling neighbours. In multi-male choruses, males that delay chirps in response to all their neighbours would remain silent most of the time and be unable to attract mates. This problem could be overcome if the afferent auditory system exhibited selective attention, and thus a male interacted only with a subset of neighbours. We investigated whether individuals of the bushcricket genus Mecopoda restricted their attention to louder chirps neurophysiologically, behaviourally and through spacing. We found that louder leading chirps were preferentially represented in the omega neuron but the representation of softer following chirps was not completely abolished. Following chirps that were 20 dB louder than leading chirps were better represented than leading chirps. During acoustic interactions, males synchronised with leading chirps even when the following chirps were 20 dB louder. Males did not restrict their attention to louder chirps during interactions but were affected by all chirps above a particular threshold. In the field, we found that males on average had only one or two neighbours whose calls were above this threshold. Selective attention is thus achieved in this bushcricket through spacing rather than neurophysiological filtering of softer signals.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The decisions animals make about how long to wait between activities can determine the success of diverse behaviours such as foraging, group formation or risk avoidance. Remarkably, for diverse animal species, including humans, spontaneous patterns of waiting times show random ‘burstiness’ that appears scale-invariant across a broad set of scales. However, a general theory linking this phenomenon across the animal kingdom currently lacks an ecological basis. Here, we demonstrate from tracking the activities of 15 sympatric predator species (cephalopods, sharks, skates and teleosts) under natural and controlled conditions that bursty waiting times are an intrinsic spontaneous behaviour well approximated by heavy-tailed (power-law) models over data ranges up to four orders of magnitude. Scaling exponents quantifying ratios of frequent short to rare very long waits are species-specific, being determined by traits such as foraging mode (active versus ambush predation), body size and prey preference. A stochastic–deterministic decision model reproduced the empirical waiting time scaling and species-specific exponents, indicating that apparently complex scaling can emerge from simple decisions. Results indicate temporal power-law scaling is a behavioural ‘rule of thumb’ that is tuned to species’ ecological traits, implying a common pattern may have naturally evolved that optimizes move–wait decisions in less predictable natural environments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

One component of successful parenting is related to efficiency in foraging behaviour. The relationships among chick feeding, the size and type of food package, and length of parental foraging trips has not been well studied in seabirds. In addition, relatively few data have been collected on the activities of seabirds when foraging away from the nest site. The objectives of this study were: (1) to contrast productivity, feeding rate, and attendance patterns of individuals carrying a novel transmitter with a control group of birds; (2) to use radio-telemetry to assess the variability in foraging locations within and between individual male Common Terns; (3) to determine the seasonal variation in chick diet; (4) to determine for each transmittered bird, the relationships among the foraging patterns, parental behaviour, and seasonal reproductive success. The study took place over two years (1990-91) on a concrete breakwater 1 km offshore on Lake Erie near Port Colbome, Ontario. Ten pairs of terns in 1990 and 12 pairs in 1991 were radio-tracked by boat or car during the chick rearing stage. Concurrent behavioural observations documented the time each sex spent foraging or at the nest. The frequency and prey species composition of feeds to chicks were also recorded. The transmitters had negligible effects on the feeding frequency and brood attendance patterns of transmitter carrying birds. Peak nesting transmittered birds in 1990 and 1991 exhibited some inter-individual variability in foraging locations, however intraindividual variability was low. Birds foraged primarily to the west and northwest of the colony. Late nesters exhibited greater inter-individual variability, however intra-individual variability remained low for most birds. Neither group demonstrated sufficient variability to support the regular use of this colony as an "information centre". Individual transmittered birds had unique and predictable foraging patterns, and corresponding differences in feeding frequencies and brood attendance patterns, yet productivity was essentially equal between nests due to the impact and importance of stochastic events. Individuals that were recaptured in 1991 exhibited very similar foraging patterns to 1990, suggesting littie variability between years. Conservation of foraging patterns between years may have potential implications for mate choice decisions in future breeding seasons. Prey species delivered to chicks differed between morning and evening for peak and late nesters in 1990, but not 1991. Peak nesters in 1990 fed significantiy more Rainbow Smelt fOsmerus mordM) than Emerald Shiner (Notropis atherinoidesV this trend was reversed for late nesters who also fed large numbers of unidentified larval fish. No significant differences were found in 1991. Seasonal changes in prey species delivered to chicks is believed to be attributable to the temperature tolerances of the smelt and shiners, and the presence of large schools of larval fish during the late nesting season.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The feeding rate of a parasitic gnathiid isopod on fish was examined. Individual fish, Hemigymnus melapterus, were exposed to gnathiid larvae and sampled after 5, 10, 30, 60, and 240 min. I recorded whether larvae had an engorged gut, an engorged gut containing red material, or had dropped off the fish after having completed engorgement; variation among sampling times and larval stages was analyzed using generalized linear mixed model analyses. The likelihood that larvae had an engorged gut increased with time and varied with larval stage. First stage (1.45 mm) larvae. After 30 min, however, most (>93%) larvae had an engorged gut regardless of their larval stage. The likelihood of red material in the gut of third stage larvae increased over time (46% after 30 min, 70% after 60 min, and 86% after 240 min) while that of first and second stage larvae remained relatively low (

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microclimate and host plant architecture significantly influence the abundance and behavior of insects. However, most research in this field has focused at the invertebrate assemblage level, with few studies at the single-species level. Using wild Solanum mauritianum plants, we evaluated the influence of plant structure (number of leaves and branches and height of plant) and microclimate (temperature, relative humidity, and light intensity) on the abundance and behavior of a single insect species, the monophagous tephritid fly Bactrocera cacuminata (Hering). Abundance and oviposition behavior were signficantly influenced by the host structure (density of foliage) and associated microclimate. Resting behavior of both sexes was influenced positively by foliage density, while temperature positively influenced the numbers of resting females. The number of ovipositing females was positively influenced by temperature and negatively by relative humidity. Feeding behavior was rare on the host plant, as was mating. The relatively low explanatory power of the measured variables suggests that, in addition to host plant architecture and associated microclimate, other cues (e.g., olfactory or visual) could affect visitation and use of the larval host plant by adult fruit flies. For 12 plants observed at dusk (the time of fly mating), mating pairs were observed on only one tree. Principal component analyses of the plant and microclimate factors associated with these plants revealed that the plant on which mating was observed had specific characteristics (intermediate light intensity, greater height, and greater quantity of fruit) that may have influenced its selection as a mating site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent experimental evidence has shown that learning occurs in the host selection behaviour of Helicoverpa armigera (Hübner), one of the world‘s most important agricultural pests. This paper discusses how the occurrence of learning changes our understanding of the host selection behaviour of this polyphagous moth. Host preferences determined from previous laboratory studies may be vastly different from preferences exhibited by moths in the field, where the abundance of particular hosts may be more likely to determine host preference. In support of this prediction, a number of field studies have shown that the ‘attractiveness’ of different hosts for H. armigera oviposition may depend on the relative abundance of these host species. Insect learning may play a fundamental role in the design and application of present and future integrated pest management strategies such as the use of host volatiles, trap crops and resistant crop varieties for monitoring and controlling this important pest species

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Learning can allow individuals to increase their fitness in particular environments. The advantage to learning depends on the predictability of the environment and the extent to which animals can adjust their behaviour. Earlier general models have investigated when environmental predictability might favour the evolution of learning in foraging animals. Here, we construct a theoretical model that predicts the advantages to learning using a specific biological example: oviposition in the Lepidoptera. Our model includes environmental and behavioural complexities relevant to host selection in these insects and tests whether the predictions of the general models still hold. Our results demonstrate how the advantage of learning is maximised when within-generation variability is minimised (the local environment consists mainly of a single host plant species) and between-generation variability is maximised (different host plant species are the most common in different generations). We discuss how our results: (a) can be applied to recent empirical work in different lepidopteran species and (b) predict an important role of learning in lepidopteran agricultural pests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The host location behaviour of foraging caterpillars has received little attention, despite the wealth of theoretical and empirical studies that have been directed at this behavioural trait in adult Lepidoptera. Here, we study caterpillars of the moth Heliothis punctifera Walker (Lepidoptera: Noctuidae), which inhabits the arid inland desert areas of Australia. Caterpillars of this species consume many flowerheads before completing development and can be observed moving across the sand in search of new hosts. Consequently, if host location behaviour favours attraction to certain plant species, it might be expected to influence the distribution and abundance of caterpillars in the field. We present field data showing that H. punctifera caterpillars are unevenly distributed throughout mixed patches of two of its host species, with a higher abundance on Senecio gregorii F. Muell., the annual yellow top, compared to Myriocephalus stuartii (F. Muell. & Sond.) Benth., the poached egg daisy (both Asteraceae). Using laboratory studies, we test whether this distribution may, in part, be due to host location behaviour of caterpillars. Our results show that caterpillars exhibit a preference for locating S. gregorii in their pre- and post-contact foraging behaviour. In addition, our results provide evidence that feeding history plays a role in host location behaviour in this insect. We propose that key features of the desert environment and the ecology of H. punctifera would favour adaptations to host location behaviour by immatures.