993 resultados para behavioral plasticity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many species are currently experiencing anthropogenically driven environmental changes. Among these changes, increasing noise levels are specifically a problem for species relying on acoustic communication. Recent evidence suggests that some species adjust their acoustic signals to man-made noise. However, it is unknown whether these changes occur through short-term and reversible adjustments by behavioral plasticity or through long-term adaptations by evolutionary change. Using behavioral observations and playback experiments, we show that male reed buntings (Emberiza schoeniclus) adjusted their songs immediately, singing at a higher minimum frequency and at a lower rate when noise levels were high. Our data showed that these changes in singing behavior were short-term adjustments of signal characteristics resulting from behavioral plasticity, rather than a long-term adaptation. However, more males remained unpaired at a noisy location than at a quiet location throughout the breeding season. Thus, phenotypic plasticity enables individuals to respond to environmental changes, but whether these short-term adjustments are beneficial remains to be seen.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sexually selected traits are shaped by an interaction between sexual selection and other natural selection pressures in the environment. However, there is little understanding of how recent anthropogenic environmental change affects the elaboration of sexually selected traits. Most sexually selected traits are complex displays comprising multiple components that interact in a functional way, thereby affecting overall trait expression. To understand how environmental change may shape the expression of sexually selected traits, we have to consider not only (i) the phenotypic plasticity of individual components of traits but also their (ii) phenotypic integration, that is, the correlations among trait components, as well as (iii) plasticity integration, that is, the correlations among the plasticities of trait components. Here, we show that background noise is a considerable pressure in shaping a sexually selected multicomponent acoustic signal, bird song. We compared singing behavior of European robins (Erithacus rubecula) in territories that differed in levels of anthropogenic noise and conducted noise-exposure experiments to test if behavioral plasticity caused immediate changes in song components, for example, minimum frequency, song complexity, and song length. We found that song components differed in their plasticity to background noise and that plasticity integration between components may further restrict the elaboration of song. Thus, the altered expression of song components under noise exposure leads to increased phenotypic integration, which is linked with reduced song complexity. Our findings demonstrate that plasticity integration restricts the elaboration of a sexually selected trait, which raises the question of how changing environments may modify sexual selection.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the last few years, investigators have documented individual differences in many different types of behavioral plasticity. Of particular interest are individual differences in the temporal plasticity of personality traits over extended (ontogenetic) periods of time, because of the relevance of these data to models of behavioral development. We discuss recent empirical studies of the temporal consistency of personality over ontogeny, and models that make contrasting predictions about individual differences in the developmental trajectories of behavioral traits. In addition, we consider recent advances in studies of relationships between personality traits and particular types of behavioral plasticity, including statistical methods which facilitate analyses of relationships between personality traits, contextual plasticity, temporal plasticity and intraindividual variability, and empirical tests of predicted relationships between personality traits and other types of behavioral plasticity (flexibility, learning rates). As the field of animal personality and behavioral plasticity moves from a largely descriptive to a predictive phase, we suggest that there is ample room for empirical tests of recent models that predict individual differences in behavioral developmental trajectories, and for the development of new formal models that make strong predictions about relationships between personality traits and specific types of behavioral plasticity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

While they are among the most ecologically important animals within forest ecosystems, little is known about how bats respond to habitat loss and fragmentation. The threatened lesser short-tailed bat (Mystacina tuberculata), considered to be an obligate deep-forest species, is one of only 2 extant land mammals endemic to New Zealand; it plays a number of important roles within native forests, including pollination and seed dispersal, and rarely occurs in modified forests. We used radiotelemetry to study the movements, roosting behavior, and habitat use of M. tuberculata within a fragmented landscape comprised of 3 main habitat types: open space (harvested forest and pastoral land), native forests, and exotic pine plantations. We found that the bats had smaller home-range areas and travelled shorter nightly distances than populations investigated previously from contiguous native forest. Furthermore, M. tuberculata occupied all 3 habitat types, with native forest being preferred overall. However, individual variation in habitat selection was high, with some bats preferring exotic plantation and open space over native forest. Roosting patterns were similar to those previously observed in contiguous forest; individual bats often switched between communal and solitary roosts. Our findings indicate that M. tuberculata exhibit some degree of behavioral plasticity that allows them to adapt to different landscape mosaics and exploit alternative habitats. To our knowledge, this is the first such documentation of plasticity in habitat use for a bat species believed to be an obligate forest-dweller.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Fragile X mental retardation protein (FMRP) regulates neuronal RNA metabolism, and its absence or mutations leads to the Fragile X syndrome (FXS). The β-amyloid precursor protein (APP) is involved in Alzheimer's disease, plays a role in synapse formation, and is upregulated in intellectual disabilities. Here, we show that during mouse synaptogenesis and in human FXS fibroblasts, a dual dysregulation of APP and the α-secretase ADAM10 leads to the production of an excess of soluble APPα (sAPPα). In FXS, sAPPα signals through the metabotropic receptor that, activating the MAP kinase pathway, leads to synaptic and behavioral deficits. Modulation of ADAM10 activity in FXS reduces sAPPα levels, restoring translational control, synaptic morphology, and behavioral plasticity. Thus, proper control of ADAM10-mediated APP processing during a specific developmental postnatal stage is crucial for healthy spine formation and function(s). Downregulation of ADAM10 activity at synapses may be an effective strategy for ameliorating FXS phenotypes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study investigated the influence of intrinsic and extrinsic factors on the feeding ecology and foraging behavior of the whiptail lizard Ameivula aff. ocellifera, a new species widely distributed in the Brazilian Caatinga, and that is in process of description. In attendance to the objectives, the Dissertation was structured in two chapters, which correspond to scientific articles, one already published and the other to be submitted for publication. In Chapter 1 were analyzed the general diet composition, the relationship between lizard size and prey size, and the occurrence of sexual and ontogenetic differences in the diet. Chapter 2 contemplates a seasonal analysis of diet composition during two rainy seasons interspersed with a dry season, and the quantitative analysis of foraging behavior during two distinct periods. The diet composition was determined through stomach analysis of lizards (N = 111) collected monthly by active search, between September 2008 and August 2010, in the Estação Ecológica do Seridó (ESEC Seridó), state of Rio Grande do Norte. Foraging behavior was investigated during a rainy and a dry month of 2012 also in ESEC Seridó, by determining percent of time moving (PTM), number of movements per minute (MPM) and prey capture rate by the lizards (N = 28) during foraging. The main prey category in the diet of Ameivula aff. ocellifera was Insect larvae, followed by Orthoptera, Coleoptera and Araneae. Termites (Isoptera) were important only in numeric terms, having negligible volumetric contribution (<2%) and low frequency of occurrence, an uncommon feature among whiptail lizards. Males and females did not differ neither in diet composition nor in foraging behavior. Adults and juveniles ingested similar prey types, but differed in prey size. Maximum and minimum prey sizes were positively correlated with lizard body size, suggesting that in this population individuals experience an ontogenetic change in diet, eating larger prey items while growing, and at the same time excluding smaller ones. The diet showed significant seasonal differences; during the two rainy seasons (2009 and 2010), the predominant prey in diet were Insect larvae, Coleoptera and Orthoptera, while in the dry season the predominant prey were Insect larvae, Hemiptera, Araneae and Orthoptera. The degree of mobility of consumed prey during the rainy seasons was lower, mainly due to a greater consumption of larvae (highly sedentary prey) during these periods. Population niche breadth was higher in the dry season, confirming the theoretical prediction that when food is scarce, the diets tend to be more generalized. Considering the entire sample, Ameivula aff. ocellifera showed 61,0 ± 15,0% PTM, 2,03 ± 0,30 MPM, and captured 0,13 ± 0,14 per minute. Foraging mode was similar to that found for other whiptail lizards regarding PTM, but MPM was relatively superior. Seasonal differences were verified for PTM, which was significantly higher in the rainy season (66,4 ± 12,1) than in the dry season (51,5 ± 15,6). It is possible that this difference represents a behavioral adjustment in response to seasonal variation in the abundance and types of prey available in the environment in each season

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

DNA methylation plays an important role in the epigenetic control of developmental and behavioral plasticity, with connections to the generation of striking phenotypic differences between castes (larger, reproductive queens and smaller, non-reproductive workers) in honeybees and ants. Here, we provide the first comparative investigation of caste- and life stage-associated DNA methylation in several species of bees and vespid wasps displaying different levels of social organization. Our results reveal moderate levels of DNA methylation in most bees and wasps, with no clear relationship to the level of sociality. Strikingly, primitively social Polistes dominula paper wasps show unusually high overall DNA methylation and caste-related differences in site-specific methylation. These results suggest DNA methylation may play a role in the regulation of behavioral and physiological differences in primitively social species with more flexible caste differences. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Evolutionary transitions between aquatic and terrestrial environments are common in vertebrate evolution. These transitions require major changes in most physiological functions, including feeding. Emydid turtles are ancestrally aquatic, with most species naturally feeding only in water, but some terrestrial species can modulate their feeding behavior appropriately for both media. In addition, many aquatic species can be induced to feed terrestrially. A comparison of feeding in both aquatic and terrestrial environments presents an excellent opportunity to investigate the evolution of terrestrial feeding from aquatic feeding, as well as a system within which to develop methods for studying major evolutionary transitions between environments. Individuals from eight species of emydid turtles (six aquatic, two terrestrial) were filmed while feeding underwater and on land. Bite kinematics were analyzed to determine whether aquatic turtles modulated their feeding behavior in a consistent and appropriate manner between environments. Aquatic turtles showed consistent changes between environments, taking longer bites and using more extensive motions of the jaw and hyoid when feeding on land. However, these motions differ from those shown by species that naturally feed in both environments and mostly do not seem to be appropriate for terrestrial feeding. For example, more extensive motions of the hyoid are only effective during underwater suction feeding. Emydids evolving to feed on land probably would have needed to evolve or learn to overcome many, but not all, aspects of the intrinsic emydid response to terrestrial feeding. Studies that investigate major evolutionary transitions must determine what responses to the new environment are shown by naïve individuals in order to fully understand the evolutionary patterns and processes associated with these transitions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lake Baikal, the world's most voluminous freshwater lake, has experienced unprecedented warming during the last decades. A uniquely diverse amphipod fauna inhabits the littoral zone and can serve as a model system to identify the role of thermal tolerance under climate change. This study aimed to identify sublethal thermal constraints in two of the most abundant endemic Baikal amphipods, Eulimnogammarus verrucosus and Eulimnogammarus cyaneus, and Gammarus lacustris, a ubiquitous gammarid of the Holarctic. As the latter is only found in some shallow isolated bays of the lake, we further addressed the question whether rising temperatures could promote the widespread invasion of this non-endemic species into the littoral zone. Animals were exposed to gradual temperature increases (4 week, 0.8 °C/d; 24 h, 1 °C/h) starting from the reported annual mean temperature of the Baikal littoral (6 °C). Within the framework of oxygen- and capacity-limited thermal tolerance (OCLTT), we used a nonlinear regression approach to determine the points at which the changing temperature-dependence of relevant physiological processes indicates the onset of limitation. Limitations in ventilation representing the first limits of thermal tolerance (pejus (= "getting worse") temperatures (Tp)) were recorded at 10.6 (95% confidence interval; 9.5, 11.7), 19.1 (17.9, 20.2), and 21.1 (19.8, 22.4) °C in E. verrucosus, E. cyaneus, and G. lacustris, respectively. Field observations revealed that E. verrucosus retreated from the upper littoral to deeper and cooler waters once its Tp was surpassed, identifying Tp as the ecological thermal boundary. Constraints in oxygen consumption at higher than critical temperatures (Tc) led to an exponential increase in mortality in all species. Exposure to short-term warming resulted in higher threshold values, consistent with a time dependence of thermal tolerance. In conclusion, species-specific limits to oxygen supply capacity are likely key in the onset of constraining (beyond pejus) and then life-threatening (beyond critical) conditions. Ecological consequences of these limits are mediated through behavioral plasticity in E. verrucosus. However, similar upper thermal limits in E. cyaneus (endemic, Baikal) and G. lacustris (ubiquitous, Holarctic) indicate that the potential invader G. lacustris would not necessarily benefit from rising temperatures. Secondary effects of increasing temperatures remain to be investigated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Given the ubiquity of the parasites and their important fitness consequences on mate and offspring condition, selection for the ability to distinguish healthy from parasitized potential mates is a key process to enhance Darwinian fitness. In this study, we experimentally evaluated how the immunological experience of two potential partners influences mate choice, using the sex-role-reversed pipefish Syngnathus typhle. We exposed S. typhle to immune challenges with heat-killed Vibrio bacteria and investigated whether the activation of the immune system determined mate preferences. Our results demonstrate that the immune status of the potential partners influenced female mate preference, such that females that were exposed to an immune challenge became choosy and favored unchallenged males. Males, however, did not show any preferences for female immune status. In this context, we discuss mate choice decisions and behavioral plasticity as a complex result of immune challenge, severity of infection, as well as trans-generational effects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Long-term potentiation (LTP) is a form of synaptic memory that may subserve developmental and behavioral plasticity. An intensively investigated form of LTP is dependent upon N-methyl-D-aspartate (NMDA) receptors and can be elicited in the dentate gyrus and hippocampal CA1. Induction of this type of LTP is triggered by influx of Ca2+ through activated NMDA receptors, but the downstream mechanisms of induction, and even more so of LTP maintenance, remain controversial. It has been reported that the function of NMDA receptor channel can be regulated by protein tyrosine kinases and protein phosphatases and that inhibition of protein tyrosine kinases impairs induction of LTP. Herein we report that LTP in the dentate gyrus is specifically correlated with tyrosine phosphorylation of the NMDA receptor subunit 2B in an NMDA receptor-dependent manner. The effect is observed with a delay of several minutes after LTP induction and persists in vivo for several hours. The potential relevance of this post-translational modification to mechanisms of LTP and circuit plasticity is discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nerve injury is known to produce a variety of electrophysiological and morphological neuronal alterations (reviewed by Titmus and Faber, 1990; Bulloch and Ridgeway, 1989; Walters, 1994). Determining if these alterations are adaptive and how they are activated and maintained could provide important insight into basic cellular mechanisms of injury-induced plasticity. Furthermore, characterization of injury-induced plasticity provides a useful assay system for the identification of possible induction signals underlying these neuronal changes. Understanding fundamental mechanisms and underlying induction signals of injury-induced neuronal plasticity could facilitate development of treatment strategies for neural injury and neuropathic pain in humans.^ This dissertation characterizes long-lasting, injury-induced neuronal alterations using the nervous system of Aplysia californica as a model. These changes are examined at the behavioral, electrophysiological, and morphological levels. Injury-induced changes in the electrophysiological properties of neurons were found that increased the signaling effectiveness of the injured neurons. This increase in signalling effectiveness could act to compensate for partial destruction of the injured neuron's peripheral processes. Recovery of a defensive behavioral response which serves to protect the animal from further injury was found within 2 weeks of injury. For the behavioral recovery to occur, new neural pathways must have been formed between the denervated area and the CNS. This was found to be mediated at least in part by new axonal growth which extended from the injured cell back along the original pathway (i.e. into the injured nerve). In addition, injury produced central axonal sprouting into different nerves that do not usually contain the injured neuron's axons. This could be important for (i) finding alternative pathways to the periphery when the original pathways are impassable and (ii) the formation of additional synaptic connections with post-synaptic targets which would further enhance the signalling effectiveness of the injured cell. ^