989 resultados para behavioral modeling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta tese investiga a caracterização (e modelação) de dispositivos que realizam o interface entre os domínios digital e analógico, tal como os buffers de saída dos circuitos integrados (CI). Os terminais sem fios da atualidade estão a ser desenvolvidos tendo em vista o conceito de rádio-definido-por-software introduzido por Mitola. Idealmente esta arquitetura tira partido de poderosos processadores e estende a operação dos blocos digitais o mais próximo possível da antena. Neste sentido, não é de estranhar que haja uma crescente preocupação, no seio da comunidade científica, relativamente à caracterização dos blocos que fazem o interface entre os domínios analógico e digital, sendo os conversores digital-analógico e analógico-digital dois bons exemplos destes circuitos. Dentro dos circuitos digitais de alta velocidade, tais como as memórias Flash, um papel semelhante é desempenhado pelos buffers de saída. Estes realizam o interface entre o domínio digital (núcleo lógico) e o domínio analógico (encapsulamento dos CI e parasitas associados às linhas de transmissão), determinando a integridade do sinal transmitido. Por forma a acelerar a análise de integridade do sinal, aquando do projeto de um CI, é fundamental ter modelos que são simultaneamente eficientes (em termos computacionais) e precisos. Tipicamente a extração/validação dos modelos para buffers de saída é feita usando dados obtidos da simulação de um modelo detalhado (ao nível do transístor) ou a partir de resultados experimentais. A última abordagem não envolve problemas de propriedade intelectual; contudo é raramente mencionada na literatura referente à caracterização de buffers de saída. Neste sentido, esta tese de Doutoramento foca-se no desenvolvimento de uma nova configuração de medição para a caracterização e modelação de buffers de saída de alta velocidade, com a natural extensão aos dispositivos amplificadores comutados RF-CMOS. Tendo por base um procedimento experimental bem definido, um modelo estado-da-arte é extraído e validado. A configuração de medição desenvolvida aborda não apenas a integridade dos sinais de saída mas também do barramento de alimentação. Por forma a determinar a sensibilidade das quantias estimadas (tensão e corrente) aos erros presentes nas diversas variáveis associadas ao procedimento experimental, uma análise de incerteza é também apresentada.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A integridade do sinal em sistemas digitais interligados de alta velocidade, e avaliada através da simulação de modelos físicos (de nível de transístor) é custosa de ponto vista computacional (por exemplo, em tempo de execução de CPU e armazenamento de memória), e exige a disponibilização de detalhes físicos da estrutura interna do dispositivo. Esse cenário aumenta o interesse pela alternativa de modelação comportamental que descreve as características de operação do equipamento a partir da observação dos sinais eléctrico de entrada/saída (E/S). Os interfaces de E/S em chips de memória, que mais contribuem em carga computacional, desempenham funções complexas e incluem, por isso, um elevado número de pinos. Particularmente, os buffers de saída são obrigados a distorcer os sinais devido à sua dinâmica e não linearidade. Portanto, constituem o ponto crítico nos de circuitos integrados (CI) para a garantia da transmissão confiável em comunicações digitais de alta velocidade. Neste trabalho de doutoramento, os efeitos dinâmicos não-lineares anteriormente negligenciados do buffer de saída são estudados e modulados de forma eficiente para reduzir a complexidade da modelação do tipo caixa-negra paramétrica, melhorando assim o modelo standard IBIS. Isto é conseguido seguindo a abordagem semi-física que combina as características de formulação do modelo caixa-negra, a análise dos sinais eléctricos observados na E/S e propriedades na estrutura física do buffer em condições de operação práticas. Esta abordagem leva a um processo de construção do modelo comportamental fisicamente inspirado que supera os problemas das abordagens anteriores, optimizando os recursos utilizados em diferentes etapas de geração do modelo (ou seja, caracterização, formulação, extracção e implementação) para simular o comportamento dinâmico não-linear do buffer. Em consequência, contributo mais significativo desta tese é o desenvolvimento de um novo modelo comportamental analógico de duas portas adequado à simulação em overclocking que reveste de um particular interesse nas mais recentes usos de interfaces de E/S para memória de elevadas taxas de transmissão. A eficácia e a precisão dos modelos comportamentais desenvolvidos e implementados são qualitativa e quantitativamente avaliados comparando os resultados numéricos de extracção das suas funções e de simulação transitória com o correspondente modelo de referência do estado-da-arte, IBIS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Authentication plays an important role in how we interact with computers, mobile devices, the web, etc. The idea of authentication is to uniquely identify a user before granting access to system privileges. For example, in recent years more corporate information and applications have been accessible via the Internet and Intranet. Many employees are working from remote locations and need access to secure corporate files. During this time, it is possible for malicious or unauthorized users to gain access to the system. For this reason, it is logical to have some mechanism in place to detect whether the logged-in user is the same user in control of the user's session. Therefore, highly secure authentication methods must be used. We posit that each of us is unique in our use of computer systems. It is this uniqueness that is leveraged to "continuously authenticate users" while they use web software. To monitor user behavior, n-gram models are used to capture user interactions with web-based software. This statistical language model essentially captures sequences and sub-sequences of user actions, their orderings, and temporal relationships that make them unique by providing a model of how each user typically behaves. Users are then continuously monitored during software operations. Large deviations from "normal behavior" can possibly indicate malicious or unintended behavior. This approach is implemented in a system called Intruder Detector (ID) that models user actions as embodied in web logs generated in response to a user's actions. User identification through web logs is cost-effective and non-intrusive. We perform experiments on a large fielded system with web logs of approximately 4000 users. For these experiments, we use two classification techniques; binary and multi-class classification. We evaluate model-specific differences of user behavior based on coarse-grain (i.e., role) and fine-grain (i.e., individual) analysis. A specific set of metrics are used to provide valuable insight into how each model performs. Intruder Detector achieves accurate results when identifying legitimate users and user types. This tool is also able to detect outliers in role-based user behavior with optimal performance. In addition to web applications, this continuous monitoring technique can be used with other user-based systems such as mobile devices and the analysis of network traffic.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The design of concurrent software systems, in particular process-aware information systems, involves behavioral modeling at various stages. Recently, approaches to behavioral analysis of such systems have been based on declarative abstractions defined as sets of behavioral relations. However, these relations are typically defined in an ad-hoc manner. In this paper, we address the lack of a systematic exploration of the fundamental relations that can be used to capture the behavior of concurrent systems, i.e., co-occurrence, conflict, causality, and concurrency. Besides the definition of the spectrum of behavioral relations, which we refer to as the 4C spectrum, we also show that our relations give rise to implication lattices. We further provide operationalizations of the proposed relations, starting by proposing techniques for computing relations in unlabeled systems, which are then lifted to become applicable in the context of labeled systems, i.e., systems in which state transitions have semantic annotations. Finally, we report on experimental results on efficiency of the proposed computations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Petri Nets are a formal, graphical and executable modeling technique for the specification and analysis of concurrent and distributed systems and have been widely applied in computer science and many other engineering disciplines. Low level Petri nets are simple and useful for modeling control flows but not powerful enough to define data and system functionality. High level Petri nets (HLPNs) have been developed to support data and functionality definitions, such as using complex structured data as tokens and algebraic expressions as transition formulas. Compared to low level Petri nets, HLPNs result in compact system models that are easier to be understood. Therefore, HLPNs are more useful in modeling complex systems. ^ There are two issues in using HLPNs—modeling and analysis. Modeling concerns the abstracting and representing the systems under consideration using HLPNs, and analysis deals with effective ways study the behaviors and properties of the resulting HLPN models. In this dissertation, several modeling and analysis techniques for HLPNs are studied, which are integrated into a framework that is supported by a tool. ^ For modeling, this framework integrates two formal languages: a type of HLPNs called Predicate Transition Net (PrT Net) is used to model a system's behavior and a first-order linear time temporal logic (FOLTL) to specify the system's properties. The main contribution of this dissertation with regard to modeling is to develop a software tool to support the formal modeling capabilities in this framework. ^ For analysis, this framework combines three complementary techniques, simulation, explicit state model checking and bounded model checking (BMC). Simulation is a straightforward and speedy method, but only covers some execution paths in a HLPN model. Explicit state model checking covers all the execution paths but suffers from the state explosion problem. BMC is a tradeoff as it provides a certain level of coverage while more efficient than explicit state model checking. The main contribution of this dissertation with regard to analysis is adapting BMC to analyze HLPN models and integrating the three complementary analysis techniques in a software tool to support the formal analysis capabilities in this framework. ^ The SAMTools developed for this framework in this dissertation integrates three tools: PIPE+ for HLPNs behavioral modeling and simulation, SAMAT for hierarchical structural modeling and property specification, and PIPE+Verifier for behavioral verification.^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Petri Nets are a formal, graphical and executable modeling technique for the specification and analysis of concurrent and distributed systems and have been widely applied in computer science and many other engineering disciplines. Low level Petri nets are simple and useful for modeling control flows but not powerful enough to define data and system functionality. High level Petri nets (HLPNs) have been developed to support data and functionality definitions, such as using complex structured data as tokens and algebraic expressions as transition formulas. Compared to low level Petri nets, HLPNs result in compact system models that are easier to be understood. Therefore, HLPNs are more useful in modeling complex systems. There are two issues in using HLPNs - modeling and analysis. Modeling concerns the abstracting and representing the systems under consideration using HLPNs, and analysis deals with effective ways study the behaviors and properties of the resulting HLPN models. In this dissertation, several modeling and analysis techniques for HLPNs are studied, which are integrated into a framework that is supported by a tool. For modeling, this framework integrates two formal languages: a type of HLPNs called Predicate Transition Net (PrT Net) is used to model a system's behavior and a first-order linear time temporal logic (FOLTL) to specify the system's properties. The main contribution of this dissertation with regard to modeling is to develop a software tool to support the formal modeling capabilities in this framework. For analysis, this framework combines three complementary techniques, simulation, explicit state model checking and bounded model checking (BMC). Simulation is a straightforward and speedy method, but only covers some execution paths in a HLPN model. Explicit state model checking covers all the execution paths but suffers from the state explosion problem. BMC is a tradeoff as it provides a certain level of coverage while more efficient than explicit state model checking. The main contribution of this dissertation with regard to analysis is adapting BMC to analyze HLPN models and integrating the three complementary analysis techniques in a software tool to support the formal analysis capabilities in this framework. The SAMTools developed for this framework in this dissertation integrates three tools: PIPE+ for HLPNs behavioral modeling and simulation, SAMAT for hierarchical structural modeling and property specification, and PIPE+Verifier for behavioral verification.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Making use of very detailed neurophysiological, anatomical, and behavioral data to build biological-realistic computational models of animal behavior is often a difficult task. Until recently, many software packages have tried to resolve this mismatched granularity with different approaches. This paper presents KInNeSS, the KDE Integrated NeuroSimulation Software environment, as an alternative solution to bridge the gap between data and model behavior. This open source neural simulation software package provides an expandable framework incorporating features such as ease of use, scalabiltiy, an XML based schema, and multiple levels of granularity within a modern object oriented programming design. KInNeSS is best suited to simulate networks of hundreds to thousands of branched multu-compartmental neurons with biophysical properties such as membrane potential, voltage-gated and ligand-gated channels, the presence of gap junctions of ionic diffusion, neuromodulation channel gating, the mechanism for habituative or depressive synapses, axonal delays, and synaptic plasticity. KInNeSS outputs include compartment membrane voltage, spikes, local-field potentials, and current source densities, as well as visualization of the behavior of a simulated agent. An explanation of the modeling philosophy and plug-in development is also presented. Further developement of KInNeSS is ongoing with the ultimate goal of creating a modular framework that will help researchers across different disciplines to effecitively collaborate using a modern neural simulation platform.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Making use of very detailed neurophysiological, anatomical, and behavioral data to build biologically-realistic computational models of animal behavior is often a difficult task. Until recently, many software packages have tried to resolve this mismatched granularity with different approaches. This paper presents KInNeSS, the KDE Integrated NeuroSimulation Software environment, as an alternative solution to bridge the gap between data and model behavior. This open source neural simulation software package provides an expandable framework incorporating features such as ease of use, scalability, an XML based schema, and multiple levels of granularity within a modern object oriented programming design. KInNeSS is best suited to simulate networks of hundreds to thousands of branched multi-compartmental neurons with biophysical properties such as membrane potential, voltage-gated and ligand-gated channels, the presence of gap junctions or ionic diffusion, neuromodulation channel gating, the mechanism for habituative or depressive synapses, axonal delays, and synaptic plasticity. KInNeSS outputs include compartment membrane voltage, spikes, local-field potentials, and current source densities, as well as visualization of the behavior of a simulated agent. An explanation of the modeling philosophy and plug-in development is also presented. Further development of KInNeSS is ongoing with the ultimate goal of creating a modular framework that will help researchers across different disciplines to effectively collaborate using a modern neural simulation platform.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work physical and behavioral models for a bulk Reflective Semiconductor Optical Amplifier (RSOA) modulator in Radio over Fiber (RoF) links are proposed. The transmission performance of the RSOA modulator is predicted under broadband signal drive. At first, the simplified physical model for the RSOA modulator in RoF links is proposed, which is based on the rate equation and traveling-wave equations with several assumptions. The model is implemented with the Symbolically Defined Devices (SDD) in Advanced Design System (ADS) and validated with experimental results. Detailed analysis regarding optical gain, harmonic and intermodulation distortions, and transmission performance is performed. The distribution of the carrier and Amplified Spontaneous Emission (ASE) is also demonstrated. Behavioral modeling of the RSOA modulator is to enable us to investigate the nonlinear distortion of the RSOA modulator from another perspective in system level. The Amplitude-to-Amplitude Conversion (AM-AM) and Amplitude-to-Phase Conversion (AM-PM) distortions of the RSOA modulator are demonstrated based on an Artificial Neural Network (ANN) and a generalized polynomial model. Another behavioral model based on Xparameters was obtained from the physical model. Compensation of the nonlinearity of the RSOA modulator is carried out based on a memory polynomial model. The nonlinear distortion of the RSOA modulator is reduced successfully. The improvement of the 3rd order intermodulation distortion is up to 17 dB. The Error Vector Magnitude (EVM) is improved from 6.1% to 2.0%. In the last part of this work, the performance of Fibre Optic Networks for Distributed and Extendible Heterogeneous Radio Architectures and Service Provisioning (FUTON) systems, which is the four-channel virtual Multiple Input Multiple Output (MIMO), is predicted by using the developed physical model. Based on Subcarrier Multiplexing (SCM) techniques, four-channel signals with 100 MHz bandwidth per channel are generated and used to drive the RSOA modulator. The transmission performance of the RSOA modulator under the broadband multi channels is depicted with the figure of merit, EVM under di erent adrature Amplitude Modulation (QAM) level of 64 and 254 for various number of Orthogonal Frequency Division Multiplexing (OFDM) subcarriers of 64, 512, 1024 and 2048.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Os transtornos de ansiedade apresentam a maior incidência na população mundial dentre os transtornos psiquiátricos, e a eficácia clínica das drogas ansiolíticas é baixa, em parte devido ao desconhecimento acerca das bases neuroquímicas desses transtornos. Para uma compreensão mais ampla e evolutivamente substanciada desses fenômenos, a utilização de espécies filogeneticamente mais antigas pode ser uma aproximação interessante no campo da modelagem comportamental; assim, sugerimos o uso do paulistinha (Danio rerio Hamilton 1822) na tentativa de compreender a modulação de comportamentos tipo-ansiedade pelo sistema serotonérgico. Demonstramos que os níveis extracelulares de serotonina no encéfalo de paulistinhas adultos expostos ao teste de preferência claro/escuro [PCE] (mas não ao teste de distribuição vertical eliciada pela novidade [DVN]) apresentam-se elevados em relação a animais manipulados mas não expostos aos aparatos. Além disso, os níveis teciduais de serotonina no rombencéfalo e no prosencéfalo são elevados pela exposição ao PCE, enquanto no mesencéfalo são elevados pela exposição ao DVN. Os níveis extracelulares de serotonina estão correlacionados negativamente com a geotaxia no DVN, e positivamente com a escototaxia, tigmotaxia e a avaliação de risco no PCE. O tratamento agudo com uma dose baixa de fluoxetina (2,5 mg/kg) aumenta a escototaxia, a tigmotaxia e a avaliação de risco no PCE, diminui a geotaxia e o congelamento e facilita a habituação no DVN. O tratamento com buspirona diminui a escototaxia, a tigmotaxia e o congelamento nas doses de 25 e 50 mg/kg no PCE, e diminui a avaliação de risco na dose de 50 mg/kg; no DVN, ambas as doses diminuem a geotaxia, enquanto somente a maior dose diminui o congelamento e facilita a habituação. O tratamento com WAY 100635 diminui a escototaxia nas doses de 0,003 e 0,03 mg/kg, enquanto somente a dose de 0,03 mg/kg diminui a tigmotaxia e a avaliação de risco no PCE. No DVN, ambas as doses diminuem a geotaxia, enquanto somente a menor dose facilita a habituação e aumenta o tempo em uma “base” (“homebase”). O tratamento com SB 224289 não produziu efeitos sobre a escototaxia, mas aumentou a avaliação de risco na dose de 2,5 mg/kg; no DVN, essa droga diminuiu a geotaxia e o nado errático nas doses de 2,5 e 5 mg/kg, enquanto a dose de 2,5 mg/kg aumentou a formação de “bases”. O tratamento com DL-para-clorofenilalanina (2 injeções de 300 mg/kg, separadas por 24 horas) diminuiu a escototaxia, a tigmotaxia e a avaliação de risco no PCE, aumentou a geotaxia e a formação de bases e diminuiu a habituação no DVN. Quando os animais são pré-expostos a uma “substância de alarme” co-específica, observa-se um aumento nos níveis extracelulares de serotonina associados a um aumento na escototaxia, congelamento e nado errático no PCE; os efeitos comportamentais e neuroquímicos foram bloqueados pelo pré tratamento com fluoxetina (2,5 mg/kg), mas não pelo pré-tratamento com WAY 100,635 (0,003 mg/kg). Animais da linhagem leopard apresentam maior escototaxia e avaliação de risco no PCE, assim como níveis teciduais elevados de serotonina no encéfalo; o fenótipo comportamental é resgatado pelo tratamento com fluoxetina (5 mg/kg). Esses dados sugerem que o sistema serotonérgico dessa espécie modula o comportamento no DVN e no PCE de forma oposta; que a resposta de medo produzida pela substância de alarme também parece aumentar a atividade do sistema serotonérgico, um efeito possivelmente mediado pelos transportadores de serotonina, e ao menos um fenótipo mutante de alta ansiedade também está associado a esses transportadores. Sugere-se que, de um ponto de vista funcional, a serotonina aumenta a ansiedade e diminui o medo em paulistinhas.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A growing wave of behavioral studies, using a wide variety of paradigms that were introduced or greatly refined in recent years, has generated a new wealth of parametric observations about serial order behavior. What was a mere trickle of neurophysiological studies has grown to a more steady stream of probes of neural sites and mechanisms underlying sequential behavior. Moreover, simulation models of serial behavior generation have begun to open a channel to link cellular dynamics with cognitive and behavioral dynamics. Here we summarize the major results from prominent sequence learning and performance tasks, namely immediate serial recall, typing, 2XN, discrete sequence production, and serial reaction time. These populate a continuum from higher to lower degrees of internal control of sequential organization. The main movement classes covered are speech and keypressing, both involving small amplitude movements that are very amenable to parametric study. A brief synopsis of classes of serial order models, vis-à-vis the detailing of major effects found in the behavioral data, leads to a focus on competitive queuing (CQ) models. Recently, the many behavioral predictive successes of CQ models have been joined by successful prediction of distinctively patterend electrophysiological recordings in prefrontal cortex, wherein parallel activation dynamics of multiple neural ensembles strikingly matches the parallel dynamics predicted by CQ theory. An extended CQ simulation model-the N-STREAMS neural network model-is then examined to highlight issues in ongoing attemptes to accomodate a broader range of behavioral and neurophysiological data within a CQ-consistent theory. Important contemporary issues such as the nature of working memory representations for sequential behavior, and the development and role of chunks in hierarchial control are prominent throughout.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

When observers are presented with two visual targets appearing in the same position in close temporal proximity, a marked reduction in detection performance of the second target has often been reported, the so-called attentional blink phenomenon. Several studies found a similar decrement of P300 amplitudes during the attentional blink period as observed with detection performances of the second target. However, whether the parallel courses of second target performances and corresponding P300 amplitudes resulted from the same underlying mechanisms remained unclear. The aim of our study was therefore to investigate whether the mechanisms underlying the AB can be assessed by fixed-links modeling and whether this kind of assessment would reveal the same or at least related processes in the behavioral and electrophysiological data. On both levels of observation three highly similar processes could be identified: an increasing, a decreasing and a u-shaped trend. Corresponding processes from the behavioral and electrophysiological data were substantially correlated, with the two u-shaped trends showing the strongest association with each other. Our results provide evidence for the assumption that the same mechanisms underlie attentional blink task performance at the electrophysiological and behavioral levels as assessed by fixed-links models.