973 resultados para behavioral effects
Resumo:
This study was designed to determine in rats whether morphine-3-glucuronide (M3G) produces its neuro-excitatory effects most potently in the ventral hippocampus (as has been reported previously for subanalgesic doses of opioid peptides). Guide cannulae were implanted into one of seven regions of the rat brain: lateral ventricle; ventral, CA1 and CA2-CA3 regions of the hippocampus; amygdala; striatum or cortex. After a 7 day recovery period, rats received intracerebral injections of (i) M3G (1.1 or 11 nmol) (ii) DADLE ([D-Ala(2),D-Leu(5)]enkephalin), (45 nmol, positive controls) or (iii) vehicle (deionised water), and behavioral excitation was quantified over 80 min. High-dose M3G (11 nmol) evoked behavioral excitation in all brain regions but the onset, severity and duration of these effects varied considerably among brain regions. By contrast, low-dose M3G (1.1 nmol) evoked excitatory behaviors only when administered into the ventral hippocampus and the amygdala, with the most potent effects being observed in the ventral hippocampus. Prior administration of the nonselective opioid antagonists, naloxone and beta-funaltrexamine into the ventral hippocampus, markedly attenuated low-dose M3G's excitatory effects but did not significantly alter levels of excitation evoked by high-dose M3G. Naloxone given 10 min after M3G (1.1 or 11 nmol) did not significantly attenuate behavioral excitation. Thus, M3G's excitatory behavioral effects occur most potently in the ventral hippocampus as reported previously for subanalgesic doses of opioid peptides, and appear to be mediated through at least two mechanisms, one possibly involving excitatory opioid receptors and the other, non-opioid receptors.
Resumo:
The persistent nature of addiction has been associated with activity-induced plasticity of neurons within the striatum and nucleus accumbens (NAc). To identify the molecular processes leading to these adaptations, we performed Cre/loxP-mediated genetic ablations of two key regulators of gene expression in response to activity, the Ca2+/calmodulin-dependent protein kinase IV (CaMKIV) and its postulated main target, the cAMP-responsive element binding protein (CREB). We found that acute cocaine-induced gene expression in the striatum was largely unaffected by the loss of CaMKIV. On the behavioral level, mice lacking CaMKIV in dopaminoceptive neurons displayed increased sensitivity to cocaine as evidenced by augmented expression of locomotor sensitization and enhanced conditioned place preference and reinstatement after extinction. However, the loss of CREB in the forebrain had no effect on either of these behaviors, even though it robustly blunted acute cocaine-induced transcription. To test the relevance of these observations for addiction in humans, we performed an association study of CAMK4 and CREB promoter polymorphisms with cocaine addiction in a large sample of addicts. We found that a single nucleotide polymorphism in the CAMK4 promoter was significantly associated with cocaine addiction, whereas variations in the CREB promoter regions did not correlate with drug abuse. These findings reveal a critical role for CaMKIV in the development and persistence of cocaine-induced behaviors, through mechanisms dissociated from acute effects on gene expression and CREB-dependent transcription.
Resumo:
Acute infections lead to alterations in behavior, collectively known as sickness behavior. which includes reduction in locomotion, food ingestion, sexual and social behavior, environmental exploration, and sleep profile. Although generally seen as undesired, sickness behavior represents a conserved strategy for animals to overcome disease. Aging process is associated with a variety of changes in immunity, which are referred to as immunosenescence, and include higher mortality by infectious diseases. Few works studied sickness behavior display in old animals. Thus, we sought to investigate the display of sickness related behaviors on aged mice. Adult(3-6 months old), middle-aged (12-15 m) and aged mice (18-22 m)were treated with i.p. LPS (200 mu g/kg) and their behaviors were assessed in the open field and in the elevated plus-maze. Exploratory activity was similar in aged mice treated or not with LPS in both apparati. In the open field, locomotion remained at baseline levels; in the elevated plus-maze, there was a time-dependent decrease in motor activity. (C) 2008 Elsevier Inc. All rights reserved
Resumo:
The behavioral effects of the K-opioid receptor agonist U69593 were examined in lactating rats. On day 5 of lactation, animals were treated with 0.1 mg/kg of U69593 to determine whether it influences general activity and maternal latencies toward pups. Because little attention has been given to the possibility that pre-mating treatment with morphine may modulate the response to K-opioid receptor stimulation, another group of animals was submitted to the same acute challenge after abrupt withdrawal from repeated treatment with morphine sulfate during the pre-mating period (5 mg/kg on alternate days for a total of five doses). Acute F;opioid stimulation reduced total locomotion, rearing frequency, and time spent self-grooming and increased immobility duration. These K agonist effects were not observed in animals pretreated with morphine. Similarly, latencies to retrieve pups were longer only in animals pretreated with saline and challenged acutely with U69593. None of these effects were observed in morphine sulfate-pretreated animals. The present results suggest that pre-mating repeated exposure to morphine produces a tolerance-like effect on behavioral responses to low-dose K-opioid receptor stimulation in active reproductive females. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
The last several years have seen an increasing number of studies that describe effects of oxytocin and vasopressin on the behavior of animals or humans. Studies in humans have reported behavioral changes and, through fMRI, effects on brain function. These studies are paralleled by a large number of reports, mostly in rodents, that have also demonstrated neuromodulatory effects by oxytocin and vasopressin at the circuit level in specific brain regions. It is the scope of this review to give a summary of the most recent neuromodulatory findings in rodents with the aim of providing a potential neurophysiological basis for their behavioral effects. At the same time, these findings may point to promising areas for further translational research towards human applications.
Resumo:
In this paper we study the role of incomplete ex ante contracts for ex post trade. Previous experimental evidence indicates that a contract provides a reference point for entitlements when the terms are negotiated in a competitive market. We show that this finding no longer holds when the terms are determined in a non-competitive way. Our results imply that the presence of a "fundamental transformation" (i.e., the transition from a competitive market to a bilateral relationship) is important for a contract to become a reference point. To the best of our knowledge this behavioral aspect of the fundamental transformation has not been shown before.
Resumo:
The last several years have seen an increasing number of studies that describe effects of oxytocin and vasopressin on the behavior of animals or humans. Studies in humans have reported behavioral changes and, through fMRI, effects on brain function. These studies are paralleled by a large number of reports, mostly in rodents, that have also demonstrated neuromodulatory effects by oxytocin and vasopressin at the circuit level in specific brain regions. It is the scope of this review to give a summary of the most recent neuromodulatory findings in rodents with the aim of providing a potential neurophysiological basis for their behavioral effects. At the same time, these findings may point to promising areas for further translational research towards human applications.
Resumo:
To investigate the behavioral effects of different vehicles microinjected into the dorsal periaqueductal grey (DPAG) of male Wistar rats, weighing 200-250 g, tested in the elevated plus maze, animals were implanted with cannulas aimed at this structure. One week after surgery the animals received microinjections into the DPAG of 0.9% (w/v) saline, 10% (v/v) dimethyl sulfoxide (DMSO), 2% (v/v) Tween-80, 10% (v/v) propylene glycol, or synthetic cerebrospinal fluid (CSF). Ten min after the injection (0.5 µl) the animals (N = 8-13/group) were submitted to the elevated plus maze test. DMSO significantly increased the number of entries into both the open and enclosed arms when compared to 0.9% saline (2.7 ± 0.8 and 8.7 ± 1.3 vs 0.8 ± 0.3 and 5.1 ± 0.9, respectively, Duncan test, P<0.05), and tended to increase enclosed arm entries as compared to 2% Tween-80 (8.7 ± 1.3 vs 5.7 ± 0.9, Duncan test, P<0.10). In a second experiment no difference in plus maze exploration was found between 0.9% saline- or sham-injected animals (N = 11-13/group). These results indicate that intra-DPAG injection of some commonly used vehicles such as DMSO, saline or Tween-80 affects the exploratory activity of rats exposed to the elevated plus maze in statistically different manners
Resumo:
The effects of postnatal amitraz exposure on physical and behavioral parameters were studied in Wistar rats, whose lactating dams received the pesticide (10 mg/kg) orally on days 1, 4, 7, 10, 13, 16 and 19 of lactation; control dams received distilled water (1 ml/kg) on the same days. A total of 18 different litters (9 of them control and 9 experimental) born after a 21-day gestation were used. The results showed that the median effective time (ET50) for fur development, eye opening, testis descent and onset of the startle response were increased in rats postnatally exposed to amitraz (2.7, 15.1, 21.6 and 15.3 days, respectively) compared to those of the control pups (1.8, 14.0, 19.9 and 12.9 days, respectively). The ages of incisor eruption, total unfolding of the external ears, vaginal and ear opening and the time taken to perform the grasping hindlimb reflex were not affected by amitraz exposure. Pups from dams treated with amitraz during lactation took more time (in seconds) to perform the surface righting reflex on postnatal days (PND) 3 (25.0 ± 2.0), 4 (12.3 ± 1.2) and 5 (8.7 ± 0.9) in relation to controls (10.6 ± 1.2; 4.5 ± 0.6 and 3.4 ± 0.4, respectively); the climbing response was not changed by amitraz. Postnatal amitraz exposure increased spontaneous motor activity of male and female pups in the open-field on PND 16 (140 ± 11) and 17 (124 ± 12), and 16 (104 ± 9), 17 (137 ± 9) and 18 (106 ± 8), respectively. Data on spontaneous motor activity of the control male and female pups were 59 ± 11 and 69 ± 10 for days 16 and 17 and 49 ± 9, 48 ± 7 and 56 ± 7 for days 16, 17 and 18, respectively. Some qualitative differences were also observed in spontaneous motor behavior; thus, raising the head, shoulder and pelvis matured one or two days later in the amitraz-treated offspring. Postnatal amitraz exposure did not change locomotion and rearing frequencies or immobility time in the open-field on PND 30, 60 and 90. The present findings indicate that postnatal exposure to amitraz caused transient developmental and behavioral changes in the exposed offspring and suggest that further investigation of the potential health risk of amitraz exposure to developing human and animal offsprings may be warranted.
Resumo:
Cocaine sensitization is a marker for some facets of addiction, is greater in female rats, and may be influenced by their sex hormones. We compared the modulatory effects of endogenous or exogenous estradiol and progesterone on cocaine-induced behavioral sensitization in 106 female rats. Ovariectomized female rats received progesterone (0.5 mg/mL), estradiol (0.05 mg/mL), progesterone plus estradiol, or the oil vehicle. Sham-operated control females received oil. Control and acute subgroups received injections of saline, while the repeated group received cocaine (15 mg/kg, ip) for 8 days. After 10 days, the acute and repeated groups received a challenge dose of cocaine, after which locomotion and stereotypy were monitored. The estrous cycle phase was evaluated and blood was collected to verify hormone levels. Repeated cocaine treatment induced overall behavioral sensitization in female rats, with increased locomotion and stereotypies. In detailed analysis, ovariectomized rats showed no locomotor sensitization; however, the sensitization of stereotypies was maintained. Only females with endogenous estradiol and progesterone demonstrated increased locomotor activity after cocaine challenge. Estradiol replacement enhanced stereotyped behaviors after repeated cocaine administration. Cocaine sensitization of stereotyped behaviors in female rats was reduced after progesterone replacement, either alone or concomitant with estradiol. The behavioral responses (locomotion and stereotypy) to cocaine were affected differently, depending on whether the female hormones were of an endogenous or exogenous origin. Therefore, hormonal cycling appears to be an important factor in the sensitization of females. Although estradiol increases the risk of cocaine sensitization, progesterone warrants further study as a pharmacological treatment in the prevention of psychostimulant abuse.
Resumo:
Crotoxin is the major component of Crotalus durissus terrificus venom. In view of the presence of high-affinity specific binding sites for crotoxin in the brain, the objective of this work was to investigate whether crotoxin induces behavioral effects in the open-field and hole-board tests. Adult male Wistar rats (180-220 g) treated with crotoxin, 100, 250 and 500 mu g/kg, ip, administered 2 h before the test, presented statistically significant behavioral alterations (ANOVA for one-way classification complemented with Dunnet test, P<0.05). In the open-field test, 250 and 500 mu g/kg of crotoxin increased freezing (from 3.22 sec to 10.75 sec and 11.2 sec) and grooming (from 13.44 sec to 22.75 sec and 21.22 sec) and decreased ambulation (from 64.8 to 39.38 and 45.8). The dose of 500 mu g/kg also decreased rearing (from 24.9 to 17.5). In the hole-board test, 500 mu g/kg of crotoxin decreased head-dip count (from 6.33 to 4.00). All the crotoxin-induced behavioral effects were antagonized by an anxiolytic dose of diazepam (1.5 mg/kg, ip, 30 min before the tests). These results show that crotoxin reduced open-field activity and exploratory behavior as well. We suggest that these effects express an increased emotional state induced by this toxin.
Resumo:
The effects of fipronil (Frontline (R) Top Spot) were investigated in 40 days old rats utilizing open field (OF), hole-board (HB) and elevated plus-maze (EPM) apparatus. Rats (N=15) received topical application of fipronil (70, 140 and 280 mg/kg) in the neck region and behavior was tested 3 h after administration. Animals treated with corn oil (vehicle) were used as controls. In the of test animals treated with fipronil at 140 mg/kg showed increased rearing, whereas animals exposed to 280 mg/kg showed increased freezing, grooming, and rearing. In the HB test fipronil at 280 mg/kg increased head-dip and head-dipping behaviors. In the EPM test the only observed effect was increased number of entries in both open and closed EPM arms in animals treated with 280 mg/kg. In conclusion, dermal exposure to fipronil causes effects related to emotionality, fear, and exploratory activity; results add strength to the growing concern that pirazole insecticides can be neurotoxic to humans. Published by Elsevier B.V.
Resumo:
The effects of postnatal amitraz exposure on physical and behavioral parameters were studied in Wistar rats, whose lactating dams received the pesticide (10 mg/Kg) orally on days 1, 4, 7, 10, 13, 16 and 19 of lactation; control dams received distilled water (1 ml/kg) on the same days. A total of 18 different litters (9 of them control and 9 experimental) born after a 21- day gestation were used. The results showed that the median effective time (ET50) for fur development, eye opening, testis descent and onset of the startle response were increased in rats postnatally exposed to amitraz (2.7, 15.1, 21.6 and 15.3 days, respectively) compared to those of the control pups (1.8, 14.0, 19.9 and 12.9 days, respectively). The ages of incisor eruption, total unfolding of the external ears, vaginal and ear opening and the time taken to perform the grasping hindlimb reflex were not affected by amitraz exposure. Pups from dams treated with amitraz during lactation took more time (in seconds) to perform the surface righting reflex on postnatal days (PND) 3 (25.0 ±2.0), 4 (12.3 ± 1.2) and 5 (8.7 ± 0.9) in relation to controls (10.6 ± 1.2; 4.5 ± 0.6 and 3.4 ± 0.4, respectively); the climbing response was not changed by amitraz. Postnatal amitraz exposure increased spontaneous motor activity of male and female pups in the open-field on PND 16 (140± 11)and 17(124± 12), and 16 (104±9), 17 (137 ± 9) and 18 (106 ± 8), respectively. Data on spontaneous motor activity of the control male and female pups were 59 ± 11 and 69 ± 10 for days 16 and 17 and 49 ± 9, 48 ± 7 and 56 ± 7 for days 16, 17 and 18, respectively. Some qualitative differences were also observed in spontaneous motor behavior; thus, raising the head, shoulder and pelvis matured one or two days later in the amitraz- treated offspring. Postnatal amitraz exposure did not change locomotion and rearing frequencies or immobility time in the open-field on PND 30, 60 and 90. The present findings indicate that postnatal exposure to amitraz caused transient developmental and behavioral changes in the exposed offspring and suggest that further investigation of the potential health risk of amitraz exposure to developing human and animal offsprings may be warranted.
Resumo:
The antinociceptive and behavioral effects of methadone (MET) alone or combined with detomidine (DET) were studied in horses. Intravenous treatments were randomly administered in a two-phase crossover study. In phase 1, six horses were treated with saline (control) or 0.2 or 0.5 mg/kg methadone (MET0.2; MET0.5, respectively). In phase 2, six horses were treated with 0.01 mg/kg DET alone or with DET combined with 0.2 mg/kg MET (DET/MET0.2). Thermal nociceptive threshold (TNT) and electrical nociceptive thresholds (ENT) were recorded by using a heat projection lamp and electrodes placed in the coronary band of the thoracic limbs, respectively. Spontaneous locomotor activity (SLA) was studied by movement sensors in the stall (phase 1). Chin-to-floor distance was assessed in phase 2. In phase 1, the TNT increased significantly for 30 minute after MET0.5 but not after saline or MET0.2. Hyperesthesia and ataxia were observed in 2 of 6 and 6 of 6 horses after MET0.2 and MET0.5, respectively. SLA increased significantly for 120 minutes after MET in a dose-dependent way, but not after placebo. In phase 2, DET and DET/MET0.2 significantly increased the TNT and ENT above baseline for 15 and 30 minutes, respectively; thresholds were significantly higher with DET/MET0.2 than with DET at the same times. Chin-to-floor distance decreased significantly from baseline for 30 minutes, and no excitatory behavior was observed in both treatments. Although the higher dose of MET induced short-acting antinociception, the associated adverse effects may contraindicate its clinical use. The lower dose of MET potentiated DET-induced antinociception without adverse effects, which might be useful under clinical circumstances. © 2013 Elsevier Inc. All rights reserved.