980 resultados para beam propagation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A dynamic beam propagation model allows design optimization of high power low divergence tapered waveguide lasers. The model is extended to include spatially-resolved temperature profiles and a temperature dependent gain. Using this model, design parameters such as the optimum facet reflectivity, taper angle, and waveguide dimension can be calculated for low far-field divergence and high continuous wave power.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The basic idea of the finite element beam propagation method (FE-BPM) is described. It is applied to calculate the fundamental mode of a channel plasmonic polariton (CPP) waveguide to confirm its validity. Both the field distribution and the effective index of the, fundamental mode are given by the method. The convergence speed shows the advantage and stability of this method. Then a plasmonic waveguide with a dielectric strip deposited on a metal substrate is investigated, and the group velocity is negative for the fundamental mode of this kind of waveguide. The numerical result shows that the power flow direction is reverse to that of phase velocity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Imaginary-distance beam propagation method under the perfectly matched layer boundary condition is applied to judge single-mode behaviour of optical waveguides, for the first time to our knowledge. A new kind of silicon-on-insulator-based rib structures with half-circle cross-section is presented. The single-mode behaviour of this kind of waveguide with radius 2mum is investigated by this method. It is single-mode when the slab height is not smaller than the radius.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on a new finite-difference scheme and Runge-Kutta method together with transparent boundary conditions (TBCs), a novel beam propagation method to model step-index waveguides with tilt interfaces is presented. The modified scheme provides an precies description of the tilt interface of the nonrectangular waveguide structure, showing a much better efficiency and accuracy comparing with the previously presented formulas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new finite difference wide-angle beam propagation method is developed by introducing the least-squares expansion approximant in the propagator expansion. In this new method it is not necessary to select the reference index point because of the whole region approaching the lease-square expansion. This method avoids the problems induced by error selection of the reference index in the old methods based on Taylor or Pade expansion. Several typical structures are simulated by the new method and the results prove the validity of it.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transport of an intense electron-beam produced by the Vulcan petawatt laser through dense plasmas has been studied by imaging with high resolution the optical emission due to electron transit through the rear side of coated foam targets. It is observed that the MeV-electron beam undergoes strong filamentation and the filaments organize themselves in a ringlike structure. This behavior has been modeled using particle-in-cell simulations of the laser-plasma interaction as well as of the transport of the electron beam through the preionized plasma. In the simulations the filamentary structures are reproduced and attributed to the Weibel instability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis deals with the study of light beam propagation through different nonlinear media. Analytical and numerical methods are used to show the formation of solitonS in these media. Basic experiments have also been performed to show the formation of a self-written waveguide in a photopolymer. The variational method is used for the analytical analysis throughout the thesis. Numerical method based on the finite-difference forms of the original partial differential equation is used for the numerical analysis.In Chapter 2, we have studied two kinds of solitons, the (2 + 1) D spatial solitons and the (3 + l)D spatio-temporal solitons in a cubic-quintic medium in the presence of multiphoton ionization.In Chapter 3, we have studied the evolution of light beam through a different kind of nonlinear media, the photorcfractive polymer. We study modulational instability and beam propagation through a photorefractive polymer in the presence of absorption losses. The one dimensional beam propagation through the nonlinear medium is studied using variational and numerical methods. Stable soliton propagation is observed both analytically and numerically.Chapter 4 deals with the study of modulational instability in a photorefractive crystal in the presence of wave mixing effects. Modulational instability in a photorefractive medium is studied in the presence of two wave mixing. We then propose and derive a model for forward four wave mixing in the photorefractive medium and investigate the modulational instability induced by four wave mixing effects. By using the standard linear stability analysis the instability gain is obtained.Chapter 5 deals with the study of self-written waveguides. Besides the usual analytical analysis, basic experiments were done showing the formation of self-written waveguide in a photopolymer system. The formation of a directional coupler in a photopolymer system is studied theoretically in Chapter 6. We propose and study, using the variational approximation as well as numerical simulation, the evolution of a probe beam through a directional coupler formed in a photopolymer system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Focusing optical beams on a target through random propagation media is very important in many applications such as free space optical communica- tions and laser weapons. Random media effects such as beam spread and scintillation can degrade the optical system's performance severely. Compensation schemes are needed in these applications to overcome these random media effcts. In this research, we investigated the optimal beams for two different optimization criteria: one is to maximize the concentrated received intensity and the other is to minimize the scintillation index at the target plane. In the study of the optimal beam to maximize the weighted integrated intensity, we derive a similarity relationship between pupil-plane phase screen and extended Huygens-Fresnel model, and demonstrate the limited utility of maximizing the average integrated intensity. In the study ofthe optimal beam to minimize the scintillation index, we derive the first- and second-order moments for the integrated intensity of multiple coherent modes. Hermite-Gaussian and Laguerre-Gaussian modes are used as the coherent modes to synthesize an optimal partially coherent beam. The optimal beams demonstrate evident reduction of scintillation index, and prove to be insensitive to the aperture averaging effect.

Relevância:

100.00% 100.00%

Publicador: