797 resultados para bayesian decision making


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the ideas and problems of the Edukalibre e-learning project, in which the author takes part. The basic objective of the project shares the development and exploitation of software components for web-based information systems applied to education as well as organizing of teaching material for them. The paper concerns a problem of the mathematical-oriented courseware and describes the experience in developing LaTeX-supporting online converting tool.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In many areas of economics there is a growing interest in how expertise andpreferences drive individual and group decision making under uncertainty. Increasingly, we wish to estimate such models to quantify which of these drive decisionmaking. In this paper we propose a new channel through which we can empirically identify expertise and preference parameters by using variation in decisionsover heterogeneous priors. Relative to existing estimation approaches, our \Prior-Based Identification" extends the possible environments which can be estimated,and also substantially improves the accuracy and precision of estimates in thoseenvironments which can be estimated using existing methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper sets out to identify the initial positions of the different decisionmakers who intervene in a group decision making process with a reducednumber of actors, and to establish possible consensus paths between theseactors. As a methodological support, it employs one of the most widely-knownmulticriteria decision techniques, namely, the Analytic Hierarchy Process(AHP). Assuming that the judgements elicited by the decision makers follow theso-called multiplicative model (Crawford and Williams, 1985; Altuzarra et al.,1997; Laininen and Hämäläinen, 2003) with log-normal errors and unknownvariance, a Bayesian approach is used in the estimation of the relative prioritiesof the alternatives being compared. These priorities, estimated by way of themedian of the posterior distribution and normalised in a distributive manner(priorities add up to one), are a clear example of compositional data that will beused in the search for consensus between the actors involved in the resolution ofthe problem through the use of Multidimensional Scaling tools

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this research is to draw up a clear construction of an anticipatory communicative decision-making process and a successful implementation of a Bayesian application that can be used as an anticipatory communicative decision-making support system. This study is a decision-oriented and constructive research project, and it includes examples of simulated situations. As a basis for further methodological discussion about different approaches to management research, in this research, a decision-oriented approach is used, which is based on mathematics and logic, and it is intended to develop problem solving methods. The approach is theoretical and characteristic of normative management science research. Also, the approach of this study is constructive. An essential part of the constructive approach is to tie the problem to its solution with theoretical knowledge. Firstly, the basic definitions and behaviours of an anticipatory management and managerial communication are provided. These descriptions include discussions of the research environment and formed management processes. These issues define and explain the background to further research. Secondly, it is processed to managerial communication and anticipatory decision-making based on preparation, problem solution, and solution search, which are also related to risk management analysis. After that, a solution to the decision-making support application is formed, using four different Bayesian methods, as follows: the Bayesian network, the influence diagram, the qualitative probabilistic network, and the time critical dynamic network. The purpose of the discussion is not to discuss different theories but to explain the theories which are being implemented. Finally, an application of Bayesian networks to the research problem is presented. The usefulness of the prepared model in examining a problem and the represented results of research is shown. The theoretical contribution includes definitions and a model of anticipatory decision-making. The main theoretical contribution of this study has been to develop a process for anticipatory decision-making that includes management with communication, problem-solving, and the improvement of knowledge. The practical contribution includes a Bayesian Decision Support Model, which is based on Bayesian influenced diagrams. The main contributions of this research are two developed processes, one for anticipatory decision-making, and the other to produce a model of a Bayesian network for anticipatory decision-making. In summary, this research contributes to decision-making support by being one of the few publicly available academic descriptions of the anticipatory decision support system, by representing a Bayesian model that is grounded on firm theoretical discussion, by publishing algorithms suitable for decision-making support, and by defining the idea of anticipatory decision-making for a parallel version. Finally, according to the results of research, an analysis of anticipatory management for planned decision-making is presented, which is based on observation of environment, analysis of weak signals, and alternatives to creative problem solving and communication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper sets out to identify the initial positions of the different decision makers who intervene in a group decision making process with a reduced number of actors, and to establish possible consensus paths between these actors. As a methodological support, it employs one of the most widely-known multicriteria decision techniques, namely, the Analytic Hierarchy Process (AHP). Assuming that the judgements elicited by the decision makers follow the so-called multiplicative model (Crawford and Williams, 1985; Altuzarra et al., 1997; Laininen and Hämäläinen, 2003) with log-normal errors and unknown variance, a Bayesian approach is used in the estimation of the relative priorities of the alternatives being compared. These priorities, estimated by way of the median of the posterior distribution and normalised in a distributive manner (priorities add up to one), are a clear example of compositional data that will be used in the search for consensus between the actors involved in the resolution of the problem through the use of Multidimensional Scaling tools

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of a phase H clinical trial is to decide whether or not to develop an experimental therapy further through phase III clinical evaluation. In this paper, we present a Bayesian approach to the phase H trial, although we assume that subsequent phase III clinical trials will hat,e standard frequentist analyses. The decision whether to conduct the phase III trial is based on the posterior predictive probability of a significant result being obtained. This fusion of Bayesian and frequentist techniques accepts the current paradigm for expressing objective evidence of therapeutic value, while optimizing the form of the phase II investigation that leads to it. By using prior information, we can assess whether a phase II study is needed at all, and how much or what sort of evidence is required. The proposed approach is illustrated by the design of a phase II clinical trial of a multi-drug resistance modulator used in combination with standard chemotherapy in the treatment of metastatic breast cancer. Copyright (c) 2005 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A common interest in gene expression data analysis is to identify from a large pool of candidate genes the genes that present significant changes in expression levels between a treatment and a control biological condition. Usually, it is done using a statistic value and a cutoff value that are used to separate the genes differentially and nondifferentially expressed. In this paper, we propose a Bayesian approach to identify genes differentially expressed calculating sequentially credibility intervals from predictive densities which are constructed using the sampled mean treatment effect from all genes in study excluding the treatment effect of genes previously identified with statistical evidence for difference. We compare our Bayesian approach with the standard ones based on the use of the t-test and modified t-tests via a simulation study, using small sample sizes which are common in gene expression data analysis. Results obtained report evidence that the proposed approach performs better than standard ones, especially for cases with mean differences and increases in treatment variance in relation to control variance. We also apply the methodologies to a well-known publicly available data set on Escherichia coli bacterium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The article discusses the behavioral aspects that affect the entrepreneurs' decision making under the Knightian uncertainty approach. Since the profit arising from entrepreneurial activity represents the reward of an immeasurable and subjective risk, it has been hypothesized that innovative entrepreneurs have excessive optimism and confidence, which leads them to invest in high-risk activities. A behavioral model of decision making under uncertainty is used to test the hypothesis of overconfidence. This model is based on Bayesian inference, which allows us to model the assumption that these entrepreneurs are overconfident. We conclude that, under the hypothesis of overconfidence, these entrepreneurs decide to invest, despite the fact that the expected utility model indicates the contrary. This theoretical finding could explain why there are a large number of business failures in the first years of activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper applies probability and decision theory in the graphical interface of an influence diagram to study the formal requirements of rationality which justify the individualization of a person found through a database search. The decision-theoretic part of the analysis studies the parameters that a rational decision maker would use to individualize the selected person. The modeling part (in the form of an influence diagram) clarifies the relationships between this decision and the ingredients that make up the database search problem, i.e., the results of the database search and the different pairs of propositions describing whether an individual is at the source of the crime stain. These analyses evaluate the desirability associated with the decision of 'individualizing' (and 'not individualizing'). They point out that this decision is a function of (i) the probability that the individual in question is, in fact, at the source of the crime stain (i.e., the state of nature), and (ii) the decision maker's preferences among the possible consequences of the decision (i.e., the decision maker's loss function). We discuss the relevance and argumentative implications of these insights with respect to recent comments in specialized literature, which suggest points of view that are opposed to the results of our study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article extends existing discussion in literature on probabilistic inference and decision making with respect to continuous hypotheses that are prevalent in forensic toxicology. As a main aim, this research investigates the properties of a widely followed approach for quantifying the level of toxic substances in blood samples, and to compare this procedure with a Bayesian probabilistic approach. As an example, attention is confined to the presence of toxic substances, such as THC, in blood from car drivers. In this context, the interpretation of results from laboratory analyses needs to take into account legal requirements for establishing the 'presence' of target substances in blood. In a first part, the performance of the proposed Bayesian model for the estimation of an unknown parameter (here, the amount of a toxic substance) is illustrated and compared with the currently used method. The model is then used in a second part to approach-in a rational way-the decision component of the problem, that is judicial questions of the kind 'Is the quantity of THC measured in the blood over the legal threshold of 1.5 μg/l?'. This is pointed out through a practical example.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Following the Integrated Water Resources Management approach, the European Water Framework Directive demands Member States to develop water management plans at the catchment level. Those plans have to integrate the different interests and must be developed with stakeholder participation. To face these requirements, managers need tools to assess the impacts of possible management alternatives on natural and socio-economic systems. These tools should ideally be able to address the complexity and uncertainties of the water system, while serving as a platform for stakeholder participation. The objective of our research was to develop a participatory integrated assessment model, based on the combination of a crop model, an economic model and a participatory Bayesian network, with an application in the middle Guadiana sub-basin, in Spain. The methodology is intended to capture the complexity of water management problems, incorporating the relevant sectors, as well as the relevant scales involved in water management decision making. The integrated model has allowed us testing different management, market and climate change scenarios and assessing the impacts of such scenarios on the natural system (crops), on the socio-economic system (farms) and on the environment (water resources). Finally, this integrated assessment modelling process has allowed stakeholder participation, complying with the main requirements of current European water laws.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A participatory modelling process has been conducted in two areas of the Guadiana river (the upper and the middle sub-basins), in Spain, with the aim of providing support for decision making in the water management field. The area has a semi-arid climate where irrigated agriculture plays a key role in the economic development of the region and accounts for around 90% of water use. Following the guidelines of the European Water Framework Directive, we promote stakeholder involvement in water management with the aim to achieve an improved understanding of the water system and to encourage the exchange of knowledge and views between stakeholders in order to help building a shared vision of the system. At the same time, the resulting models, which integrate the different sectors and views, provide some insight of the impacts that different management options and possible future scenarios could have. The methodology is based on a Bayesian network combined with an economic model and, in the middle Guadiana sub-basin, with a crop model. The resulting integrated modelling framework is used to simulate possible water policy, market and climate scenarios to find out the impacts of those scenarios on farm income and on the environment. At the end of the modelling process, an evaluation questionnaire was filled by participants in both sub-basins. Results show that this type of processes are found very helpful by stakeholders to improve the system understanding, to understand each others views and to reduce conflict when it exists. In addition, they found the model an extremely useful tool to support management. The graphical interface, the quantitative output and the explicit representation of uncertainty helped stakeholders to better understand the implications of the scenario tested. Finally, the combination of different types of models was also found very useful, as it allowed exploring in detail specific aspects of the water management problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundamental principles of precaution are legal maxims that ask for preventive actions, perhaps as contingent interim measures while relevant information about causality and harm remains unavailable, to minimize the societal impact of potentially severe or irreversible outcomes. Such principles do not explain how to make choices or how to identify what is protective when incomplete and inconsistent scientific evidence of causation characterizes the potential hazards. Rather, they entrust lower jurisdictions, such as agencies or authorities, to make current decisions while recognizing that future information can contradict the scientific basis that supported the initial decision. After reviewing and synthesizing national and international legal aspects of precautionary principles, this paper addresses the key question: How can society manage potentially severe, irreversible or serious environmental outcomes when variability, uncertainty, and limited causal knowledge characterize their decision-making? A decision-analytic solution is outlined that focuses on risky decisions and accounts for prior states of information and scientific beliefs that can be updated as subsequent information becomes available. As a practical and established approach to causal reasoning and decision-making under risk, inherent to precautionary decision-making, these (Bayesian) methods help decision-makers and stakeholders because they formally account for probabilistic outcomes, new information, and are consistent and replicable. Rational choice of an action from among various alternatives-defined as a choice that makes preferred consequences more likely-requires accounting for costs, benefits and the change in risks associated with each candidate action. Decisions under any form of the precautionary principle reviewed must account for the contingent nature of scientific information, creating a link to the decision-analytic principle of expected value of information (VOI), to show the relevance of new information, relative to the initial ( and smaller) set of data on which the decision was based. We exemplify this seemingly simple situation using risk management of BSE. As an integral aspect of causal analysis under risk, the methods developed in this paper permit the addition of non-linear, hormetic dose-response models to the current set of regulatory defaults such as the linear, non-threshold models. This increase in the number of defaults is an important improvement because most of the variants of the precautionary principle require cost-benefit balancing. Specifically, increasing the set of causal defaults accounts for beneficial effects at very low doses. We also show and conclude that quantitative risk assessment dominates qualitative risk assessment, supporting the extension of the set of default causal models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There have been many models developed by scientists to assist decision-makers in making socio-economic and environmental decisions. It is now recognised that there is a shift in the dominant paradigm to making decisions with stakeholders, rather than making decisions for stakeholders. Our paper investigates two case studies where group model building has been undertaken for maintaining biodiversity in Australia. The first case study focuses on preservation and management of green spaces and biodiversity in metropolitan Melbourne under the umbrella of the Melbourne 2030 planning strategy. A geographical information system is used to collate a number of spatial datasets encompassing a range of cultural and natural assets data layers including: existing open spaces, waterways, threatened fauna and flora, ecological vegetation covers, registered cultural heritage sites, and existing land parcel zoning. Group model building is incorporated into the study through eliciting weightings and ratings of importance for each datasets from urban planners to formulate different urban green system scenarios. The second case study focuses on modelling ecoregions from spatial datasets for the state of Queensland. The modelling combines collaborative expert knowledge and a vast amount of environmental data to build biogeographical classifications of regions. An information elicitation process is used to capture expert knowledge of ecoregions as geographical descriptions, and to transform this into prior probability distributions that characterise regions in terms of environmental variables. This prior information is combined with measured data on the environmental variables within a Bayesian modelling technique to produce the final classified regions. We describe how linked views between descriptive information, mapping and statistical plots are used to decide upon representative regions that satisfy a number of criteria for biodiversity and conservation. This paper discusses the advantages and problems encountered when undertaking group model building. Future research will extend the group model building approach to include interested individuals and community groups.