919 resultados para bay of Seine
Resumo:
Impact and monitoring of dredge spoils are an important environmental issue. This investigation aims to map two dredge-spoil dispersals in the Bay of Seine by using an innovative application of well-established environmental magnetic proxies. Low-field magnetic susceptibility measurements were performed on discrete samples from dredge sediments and from the Bay of Seine seafloor before & after dumping. The fingerprinting of the dispersion of dredge-dumped sediments is efficient due to the higher susceptibility of the dredge sediments with respect to the background. Besides, terrestrial input is also monitored in our susceptibility maps. Dilution of the susceptibility signal allows an estimation of the resilience of the sedimentary environment on a six-month survey. This susceptibility signal is controlled by the ferromagnetic fraction of the sediment. A constant magnetic mineralogy carried by magnetite is observed in the study area, thus a qualitative parameter for magnetic grain size was selected that shows an in-progress resilience pattern over the survey.
Resumo:
High-resolution data from the TRMM satellite shows that sea surface temperature (SST) cools by 3 degrees C under the tracks of pre-monsoon tropical cyclones in the north Indian Ocean. However, even the strongest post-monsoon cyclones do not cool the open north Bay of Bengal. In this region, a shallow layer of freshwater from river runoff and monsoon rain caps a deep warm layer. Therefore, storm-induced mixing is not deep, and it entrains warm subsurface water. It is possible that the hydrography of the post-monsoon north Bay favours intense cyclones.
Resumo:
Simultaneous and collocated measurements of total and hemispherical backscattering coefficients (σ and β, respectively) at three wavelengths, mass size distributions, and columnar spectral aerosol optical depth (AOD) were made onboard an extensive cruise experiment covering, for the first time, the entire Bay of Bengal (BoB) and northern Indian Ocean. The results are synthesized to understand the optical properties of aerosols in the marine atmospheric boundary layer and their dependence on the size distribution. The observations revealed distinct spatial and spectral variations of all the aerosol parameters over the BoB and the presence of strong latitudinal gradients. The size distributions varied spatially, with the majority of accumulation modes decreasing from north to south. The scattering coefficient decreased from very high values (resembling those reported for continental/urban locations) in the northern BoB to very low values seen over near-pristine environments in the southeastern BoB. The average mass scattering efficiency of BoB aerosols was found to be 2.66 ± 0.1 m2 g−1 at 550 nm. The spectral dependence of columnar AOD deviated significantly from that of the scattering coefficients in the northern BoB, implying vertical heterogeneity in the aerosol type in that region. However, a more homogeneous scenario was observed in the southern BoB. Simultaneous lidar and in situ measurements onboard an aircraft over the ocean revealed the presence of elevated aerosol layers of enhanced extinction at altitudes of 1 to 3 km with an offshore extent of a few hundred kilometers. Back-trajectory analyses showed these layers to be associated with advection from west Asia and western India. The large spatial variations and vertical heterogeneity in aerosol properties, revealed by the present study, need to be included in the regional radiative forcing over the Bay of Bengal.
Resumo:
Hydrographic observations were taken along two coastal sections and one open ocean section in the Bay of Bengal during the 1999 southwest monsoon, as a part of the Bay of Bengal Monsoon Experiment (BOBMEX). The coastal section in the northwestern Bay of Bengal, which was occupied twice, captured a freshwater plume in its two stages: first when the plume was restricted to the coastal region although separated from the coast, and then when the plume spread offshore. Below the freshwater layer there were indications of an undercurrent. The coastal section in the southern Bay of Bengal was marked by intense coastal upwelling in a 50 km wide band. In regions under the influence of the freshwater plume, the mixed layer was considerably thinner and occasionally led to the formation of a temperature inversion. The mixed layer and isothermal layer were of similar depth for most of the profiles within and outside the freshwater plume and temperature below the mixed layer decreased rapidly till the top of seasonal thermocline. There was no barrier layer even in regions well under the influence of the freshwater plume. The freshwater plume in the open Bay of Bengal does not advect to the south of 16 degrees N during the southwest monsoon. A model of the Indian Ocean, forced by heat, momentum and freshwater fluxes for the year 1999, reproduces the freshwater plume in the Bay of Bengal reasonably well. Model currents as well as the surface circulation calculated as the sum of geostrophic and Ekman drift show a southeastward North Bay Monsoon Current (NBMC) across the Bay, which forms the southern arm of a cyclonic gyre. The NBMC separates the very low salinity waters of the northern Bay from the higher salinities in the south and thus plays an important role in the regulation of near surface stratification. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Hydrographic observations were taken along two coastal sections and one open ocean section in the Bay of Bengal during the 1999 southwest monsoon, as a part of the Bay of Bengal Monsoon Experiment (BOBMEX). The coastal section in the northwestern Bay of Bengal, which was occupied twice, captured a freshwater plume in its two stages: first when the plume was restricted to the coastal region although separated from the coast, and then when the plume spread offshore. Below the freshwater layer there were indications of an undercurrent. The coastal section in the southern Bay of Bengal was marked by intense coastal upwelling in a 50 km wide band. In regions under the influence of the freshwater plume, the mixed layer was considerably thinner and occasionally led to the formation of a temperature inversion. The mixed layer and isothermal layer were of similar depth for most of the profiles within and outside the freshwater plume and temperature below the mixed layer decreased rapidly till the top of seasonal thermocline. There was no barrier layer even in regions well under the influence of the freshwater plume. The freshwater plume in the open Bay of Bengal does not advect to the south of 16 degrees N during the southwest monsoon. A model of the Indian Ocean, forced by heat, momentum and freshwater fluxes for the year 1999, reproduces the freshwater plume in the Bay of Bengal reasonably well. Model currents as well as the surface circulation calculated as the sum of geostrophic and Ekman drift show a southeastward North Bay Monsoon Current (NBMC) across the Bay, which forms the southern arm of a cyclonic gyre. The NBMC separates the very low salinity waters of the northern Bay from the higher salinities in the south and thus plays an important role in the regulation of near surface stratification. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Buoy and satellite data show pronounced subseasonal oscillations of sea surface temperature (SST) in the summertime Bay of Bengal. The SST oscillations are forced mainly by surface heat flux associated with the active break cycle of the south Asian summer monsoon. The input of freshwater (FW) from summer rain and rivers to the bay is large, but not much is known about subseasonal salinity variability. We use 2002-2007 observations from three Argo floats with 5 day repeat cycle to study the subseasonal response of temperature and salinity to surface heat and freshwater flux in the central Bay of Bengal. About 95% of Argo profiles show a shallow halocline, with substantial variability of mixed layer salinity. Estimates of surface heat and freshwater flux are based on daily satellite data sampled along the float trajectory. We find that intraseasonal variability of mixed layer temperature is mainly a response to net surface heat flux minus penetrative radiation during the summer monsoon season. In winter and spring, however, temperature variability appears to be mainly due to lateral advection rather than local heat flux. Variability of mixed layer freshwater content is generally independent of local surface flux (precipitation minus evaporation) in all seasons. There are occasions when intense monsoon rainfall leads to local freshening, but these are rare. Large fluctuations in FW appear to be due to advection, suggesting that freshwater from rivers and rain moves in eddies or filaments.
Surface freshwater from Bay of Bengal runoff and Indonesian Throughflow in the Tropical Indian Ocean
Resumo:
According to recent estimates, the annual total continental runoff into the Bay of Bengal (BoB) is about 2950 km 3, which is more than half that into the entire tropical Indian Ocean (IO). Here we use climatological observations to trace the seasonal pathways of near surface freshwater from BoB runoff and Indonesian Throughflow (ITF) by removing the net contribution from precipitation minus evaporation. North of 20 degrees S, the amount of freshwater from BoB runoff and ITF changes with season in a manner consistent with surface currents from drifters. BoB runoff reaches remote regions of the Arabian Sea; it also crosses the equator in the east to join the ITF. This freshwater subsequently flows west across the southern tropical IO in the South Equatorial Current.
Resumo:
The Bay of Bengal (BoB), a small oceanic region surrounded by landmasses with distinct natural and anthropogenic activities and under the influence of seasonally changing airmass types, is characterized by a rather complex and highly heterogeneous aerosol environment. Concurrent measurements of the physical, optical, and chemical (offline analysis) properties of BoB aerosols, made onboard extensive ship-cruises and aircraft sorties during Integrated Campaign for Aerosols, gases and Radiation Budget of March-April 2006, and satellite-retrieved aerosol optical depths and derived parameters, were synthesized following a synergistic approach to delineate the anthropogenic fraction to the composite aerosol parameters and its spatial variation. Quite interestingly and contrary to the general belief, our studies revealed that, despite of the very high aerosol loading (in the marine atmospheric boundary layer as well as in the vertical column) over the northern BoB and a steep decreasing gradient toward the southern latitudes, the anthropogenic fraction showed a steady increase from North to South (where no obvious anthropogenic source regions exist). Consequently, the direct radiative forcing at the top of the atmosphere due to anthropogenic aerosols remained nearly constant over the entire BoB with values in the range from -3.3 to -3.6 Wm(-2). This interesting finding, beyond doubts calls for a better understanding of the complex aerosol system over the BoB through more focused field campaigns.
Resumo:
Satellite-derived chlorophyll a concentration (chl a) maps show three regions with high chl a in the Bay of Bengal. First among these is close to the coast, particularly off river mouths, with high values coinciding with the season of peak discharge; second is in the southwestern bay during the northeast monsoon, which is forced by local Ekman pumping; and the third is to the east of Sri Lanka in response to the summer monsoon winds. Chlorophyll-rich water from the mouths of rivers flows either along the coast or in an offshore direction, up to several hundred kilometers, depending on the prevailing ocean current pattern. The Irrawady River plume flows toward offshore and then turns northwestward during October–December, but it flows along the coast into the Andaman Sea for the rest of the year. From the Ganga-Brahmaputra river mouth, chl a–rich water flows directly southward into the open bay during spring but along the Indian coast during summer and winter. Along the Indian coast, the flow of chl a–rich water is determined by the East India Coastal Current (EICC). Whenever the EICC meanders off the Indian coast, it leads to an offshore outbreak of chl a–rich water from the coastal region into open ocean. The EICC as well as open ocean circulation in the bay is made up of several eddies, and these eddies show relatively higher chl a. Eddies near the coast, however, can often have higher chl a because of advection from the coastal region rather than generation within the eddy itself. The bay experiences several cyclones in a year, most of them occurring during October–November. These cyclones cause a drop in the sea surface temperature, a dip in the sea level, and a local increase in chl a. The impact of a cyclone is weaker in the northern part of the bay because of stronger stratification compared to the southern parts.
Resumo:
The Bay of Bengal, a semienclosed tropical basin that comes under the influence of monsoonal wind and freshwater influx, is distinguished by a strongly stratified surface layer and a seasonally reversing circulation. We discuss characteristics of these features in the western Bay during the northeast monsoon, when the East India Coastal Current (EICC) flows southward, using hydrographic data collected during December 1991. Vertical profiles show uniform temperature and salinity in a homogeneous surface layer, on average, 25 m deep but shallower northward and coastward. The halocline, immediately below, is approximately 50 m thick; salinity changes by approximately 3 parts per thousand. About two thirds of the profiles show temperature inversions in this layer. Salinity below the halocline hardly changes, and stratification is predominantly due to temperature variation, The halocline is noticeably better developed and the surface homogeneous layer is thinner in a low-salinity plume that hugs the coastline along the entire east coast of India, The plume is, on average, 50 km wide, with isohalines sloping down toward the coast. Most prominent in the geostrophic velocity field is the equatorward EICC. Its transport north of about 13 degrees N, computed with 1000 dbar as the level of reference, varies between 2.6 and 7.1 x 10(6) m(3) s(-1); just south of this latitude, a northwestward flow from offshore recurves and merges with the coastal current. At the southern end of the region surveyed, the transport is 7.7 x 10(6) m(3) s(-1). Recent model studies lead us to conclude that the EICC during the northeast monsoon is driven by winds along the east coast of India and Ekman pumping in the interior bay. In the south, Ekman pumping over the southwestern bay is responsible for the northwestward flow that merges with the EICC.