341 resultados para bax
Resumo:
Evasion of apoptosis contributes to both tumourigenesis and drug resistance in non-small cell lung carcinoma (NSCLC). The pro-apoptotic BCL-2 family proteins BAX and BAK are critical regulators of mitochondrial apoptosis. New strategies for targeting NSCLC in a mitochondria-independent manner should bypass this common mechanism of apoptosis block. BRCA1 mutation frequency in lung cancer is low; however, decreased BRCA1 mRNA and protein expression levels have been reported in a significant proportion of lung adenocarcinomas. BRCA1 mutation/deficiency confers a defect in homologous recombination DNA repair that has been exploited by synthetic lethality through inhibition of PARP (PARPi) in breast and ovarian cells; however, it is not known whether this same synthetic lethal mechanism exists in NSCLC cells. Additionally, it is unknown whether the mitochondrial apoptotic pathway is required for BRCA1/PARPi-mediated synthetic lethality. Here we demonstrate that silencing of BRCA1 expression by RNA interference sensitizes NSCLC cells to PARP inhibition. Importantly, this sensitivity was not attenuated in cells harbouring mitochondrial apoptosis block induced by co-depletion of BAX and BAK. Furthermore, we demonstrate that BRCA1 inhibition cannot override platinum resistance, which is often mediated by loss of mitochondrial apoptosis signalling, but can still sensitize to PARP inhibition. Finally we demonstrate the existence of a BRCA1-deficient subgroup (11–19%) of NSCLC patients by analysing BRCA1 protein levels using immunohistochemistry in two independent primary NSCLC cohorts. Taken together, the existence of BRCA1-immunodeficient NSCLC suggests that this molecular subgroup could be effectively targeted by PARP inhibitors in the clinic and that PARP inhibitors could be used for the treatment of BRCA1-immunodeficient, platinum-resistant tumours.
Resumo:
Polybrominated diphenyl ethers (PBDEs) are used extensively as flame-retardants and are ubiquitous in the environment and in wildlife and human tissue. Recent studies have shown that PBDEs induce neurotoxic effects in vivo and apoptosis in vitro. However, the signaling mechanisms responsible for these events are still unclear. In this study, we investigated the action of a commercial mixture of PBDEs (pentabrominated diphenyl ether, DE-71) on a human neuroblastoma cell line, SK-N-SH. A cell viability test showed a dose-dependent increase in lactate dehydrogenase leakage and 3-(4,5-dimethylthia-zol-2-yl)-2,5-diphenyl-tetrazolium bromide reduction. Cell apoptosis was observed through morphological examination, and DNA degradation in the cell cycle and cell apoptosis were demonstrated using flow cytometry and DNA laddering. The formation of reactive oxygen species was not observed, but DE-71 was found to significantly induce caspase-3, -8, and -9 activity, which suggests that apoptosis is not induced by oxidative stress but via a caspase-dependent pathway. We further investigated the intracellular calcium ([Ca2+](i)) levels using flow cytometry and observed an increase in the intracellular Ca2+ concentration with a time-dependent trend. We also found that the N-methyl d-aspartate (NMDA) receptor antagonist MK801 (3 mu M) significantly reduced DE-71-induced cell apoptosis. The results of a Western blotting test demonstrated that DE-71 treatment increases the level of Bax translocation to the mitochondria in a dose-dependent fashion and stimulates the release of cytochrome c (Cyt c) from the mitochondria into the cytoplasm. Overall, our results indicate that DE-71 induces the apoptosis of ([Ca2+](i)) in SK-N-SH cells via Bax insertion, Cyt c release in the mitochondria, and the caspase activation pathway.
Resumo:
In order to investigate the effect of carbon ion irradiation on apoptosis and Bax/Bcl-2 expression inhuman tongue carcinoma cells, exponentially growing human tongue carcinoma cells (Tb) cultured in vitro were irradiated with 0, 0.5, 1.0, 2.0 or 4.0 Gy of 12C6+ ions respectively. Survival rate of irradiated cells at various doses were measured by MTT assay. The nucleus changes of apoptosis and necrosis of cells stained by Hochest/PI were observed through fluorescence microscope. The cell cycle changes were detected by flow cytometry (FCM). The expressions of Bax and Bcl-2 were detected by Western blot analysis. The results show that the viability of Tb cells decreases gradually with increment of irradiation doses of carbon ions. The proportions of apoptosis cells in the irradiated groups are significantly higher than those in the control group. There is a positive correlation between irradiation doses and retardation strength in G2 /M phase at 24 h after irradiation (P<0.05). And the expressions of Bax and bcl-2 are significantly up-regulated and down-regulated respectively by 12C6+ ion irradiation. It can be concluded from above that cell apoptosis induced by heavy ion with high-LET may be mediated through the Bax/Bcl-2 expression pathway. 探讨重离子辐照对人舌鳞癌Tb细胞的凋亡及Bax/Bcl-2蛋白表达的影响。采用0、0.5、1.0、2.0、4.0 Gy重离子束辐照人舌鳞癌 Tb 细胞,应用 MTT 法检测细胞存活,流式细胞技术检测细胞周期变化,Hoechst33258/PI 复染法观察 Tb 细胞凋亡形态,并采用 Western-blot 法检测 Bax/Bcl-2 蛋白表达情况。结果发现,Tb细胞经12C6+离子束辐照后存活率显著下降,呈剂量依赖性的生长抑制;Tb细胞呈现蓝色荧光浓集成团的凋亡形态,且凋亡比例随辐照剂量增加;G2/M 期细胞百分数随照射剂量增加而增加(P<0.05) 。Western-blot结果显示 Bax 蛋白表达水平随辐照剂量逐渐上升,但在 4 Gy 组其表达不再增高,Bcl-2 蛋白在 1.0、2.0、4.0 Gy组随剂量增大呈下降趋势。以上结果提示重离子束辐照对 Tb 细胞有抑制作用,Bax/Bcl-2 蛋白表达是重离子治癌的机制之一。
Resumo:
探讨重离子辐照对人舌鳞癌Tb细胞的凋亡及Bax/Bcl-2蛋白表达的影响。采用0、0.5、1.0、2.0、4.0Gy重离子束辐照人舌鳞癌Tb细胞,应用MTT法检测细胞存活,流式细胞技术检测细胞周期变化,Hoechst 33258/PI复染法观察Tb细胞凋亡形态,并采用Western-blot法检测Bax/Bcl-2蛋白表达情况。结果发现,Tb细胞经12C6+离子束辐照后存活率显著下降,呈剂量依赖性的生长抑制;Tb细胞呈现蓝色荧光浓集成团的凋亡形态,且凋亡比例随辐照剂量增加;G2/M期细胞百分数随照射剂量增加而增加(P<0.05)。Western-blot结果显示Bax蛋白表达水平随辐照剂量逐渐上升,但在4Gy组其表达不再增高,Bcl-2蛋白在1.0、2.0、4.0Gy组随剂量增大呈下降趋势。以上结果提示重离子束辐照对Tb细胞有抑制作用,Bax/Bcl-2蛋白表达是重离子治癌的机制之一。
Resumo:
This study is aimed at observing the apoptosis and Bcl-2/Bax gene expression of mammalian cells following heavy-ion and X-ray irradiations. Exponentially growing human hepatoma SMMC-7721 cells cultured in vitro were irradiated with a C-12 ion beam of 50 MeV/u (corresponding to a LET value of 44.56 keV/mu m) from Heavy Ion Research Facility in Lanzhou (HIRFL) at doses varying from 0 to 3 Gy. The X-ray irradiation (8 MV) was performed in the therapy unit of the General Hospital of the Lanzhou Military Area. Survival fractions of irradiated cells at various doses were measured by means of MTT assay. Apoptotic cells after irradiation were analyzed with fluorescence microscope and flow cytometer (FCM). Immuno-histological assay were applied to detect the expression of Bcl-2/Bax genes in the irradiated cells. The survival fraction of SMMC-7721 cells decreased gradually (vs. control p<0.05) with increasing the dose of the carbon ion beam more obviously than X-ray irradiation, and the carbon ion irradiation efficiently induced cell apoptosis and significantly promoted the expression of Bax gene while Bcl-2 gene expression was restrained. High-LET heavy ion beam would induce cell apoptosis effectively than low-LET X-ray, and the apoptosis rate is correlated with the transcription of Bcl-2/Bax and the ratio of Bcl-2/Bax in human hepatoma SMMC-7721 cells after irradiation to heavy ion beam.
Resumo:
Proapoptotic Bcl-2 family members, such as Bax, promote release of cytochrome c from mitochondria, leading to caspase activation and cell death. It was previously reported that modulator of apoptosis protein 1 (MOAP-1), an enhancer of Bax activation induced by DNA damage, is stabilized by Trim39, a protein of unknown function. In this paper, we show that MOAP-1 is a novel substrate of the anaphase-promoting complex (APC/C(Cdh1)) ubiquitin ligase. The influence of Trim39 on MOAP-1 levels stems from the ability of Trim39 (a RING domain E3 ligase) to directly inhibit APC/C(Cdh1)-mediated protein ubiquitylation. Accordingly, small interfering ribonucleic acid-mediated knockdown of Cdh1 stabilized MOAP-1, thereby enhancing etoposide-induced Bax activation and apoptosis. These data identify Trim39 as a novel APC/C regulator and provide an unexpected link between the APC/C and apoptotic regulation via MOAP-1.
Resumo:
Death receptors can directly (type I cells) or indirectly induce apoptosis by activating mitochondrial-regulated apoptosis (type II cells). The level of caspase 8 activation is thought to determine whether a cell is type I or II, with type II cells less efficient at activating this caspase following death receptor activation. FLICE-inhibitory protein (FLIP) blocks death receptor-mediated apoptosis by inhibiting caspase 8 activation; therefore, we assessed whether silencing FLIP could convert type II cells into type I. FLIP silencing-induced caspase 8 activation in Bax wild-type and null HCT116 colorectal cancer cells; however, complete caspase 3 processing and apoptosis were only observed in Bax wild-type cells. Bax-null cells were also more resistant to chemotherapy and tumor necrosis factor-related apoptosis inducing ligand and, unlike the Bax wild-type cells, were not sensitized to these agents by FLIP silencing. Further analyses indicated that release of second mitochondrial activator of caspases from mitochondria and subsequent inhibition of X-linked inhibitor of apoptosis protein (XIAP) was required to induce full caspase 3 processing and apoptosis following FLIP silencing. These results indicate that silencing FLIP does not necessarily bypass the requirement for mitochondrial involvement in type II cells. Furthermore, targeting FLIP and XIAP may represent a therapeutic strategy for the treatment of colorectal tumors with defects in mitochondrial-regulated apoptosis.
Resumo:
Most cytotoxic drugs kill cells by instigating the process of apoptosis and it has been suggested that apoptotic markers may provide an indication of tumour chemosensitivity. The aim of this study was to determine if such a relationship exists in acute myeloid leukaemia (AML). The levels of spontaneous apoptosis, bcl-2 and bax were evaluated in 56 newly diagnosed AML patients to determine if they correlated with a response to cytotoxic therapy. Spontaneous apoptosis was lower, but bcl-2, bax and the bcl-2/bax ratio were higher in AML compared with normal individuals. AML patients with high bax expression at diagnosis had significantly better prognosis for disease-free survival, event-free survival and overall survival (P = 0.016). In the standard risk group, high bax expression was in keeping with significantly improved survival. Multivariate analysis revealed bax to be an independent predictor of survival. There was a significant reduction in bcl-2 and bax expression when AML patients entered complete remission and also in relapsed AML patients who entered a second remission. This study suggests that bax is a useful prognostic indicator in AML and may assist with therapeutic decision-making for patients in the standard risk category.
Resumo:
A feature of scholarship on Arnold Bax is his indebtedness, in his early works, to the Irish literary revival (particularly in the mythology-suffused works of 'AE' and early Yeats) and, in his later works, to the music of Jean Sibelius, and the relationship between these periods. I argue that this relationship, which I summarize by using Bax's portmanteau term of 'Celtic North', is underpinned by the stimulus of landscape, which, as well as being a means by which to return to the Romantic idea of the sublime, also provides a means by which Bax critiques the more modernist relationship with landscape that underpins the English pastoral school of the 1920s. Thus the 'Celtic North' is the antithesis to the English 'south land' of Vaughan Williams and others.
Resumo:
Direct pharmacological targeting of the anti-apoptotic B-cell lymphoma-2 (BCL-2) family is an attractive therapeutic strategy for treating cancer. Obatoclax is a pan-BCL-2 family inhibitor currently in clinical development. Here we show that, although obatoclax can induce mitochondrial apoptosis dependent on BCL-2 associated x protein/BCL-2 antagonist killer (BAX/BAK) consistent with its on-target pharmacodynamics, simultaneous silencing of both BAX and BAK did not abolish acute toxicity or loss of clonogenicity. This is despite complete inhibition of apoptosis. Obatoclax dramatically reduced viability without inducing loss of plasma membrane integrity. This was associated with rapid processing of light chain-3 (LC3) and reduction of S6 kinase phosphorylation, consistent with autophagy. Dramatic ultrastructural vacuolation, not typical of autophagy, was also induced. Silencing of beclin-1 failed to prevent LC3 processing, whereas knockout of autophagy-related (Atg) 7 abolished LC3 processing but failed to prevent obatoclax-induced loss of clonogenicity or ultrastructural changes. siRNA silencing of Atg7 in BAX/BAK knockout mouse embryonic fibroblasts did not prevent obatoclax-induced loss of viability. Cells selected for obatoclax resistance evaded apoptosis independent of changes in BCL-2 family expression and displayed reduced LC3 processing. In summary, obatoclax exhibits BAX- and BAK-dependent and -independent mechanisms of toxicity and activation of autophagy. Mechanisms other than autophagy and apoptosis are blocked in obatoclax resistant cells and contribute significantly to obatoclax's anticancer efficacy. Cell Death and Disease (2010) 1, e108; doi:10.1038/cddis.2010.86; published online 16 December 2010
Resumo:
Evasion of apoptosis contributes to both tumourigenesis and drug resistance in non-small cell lung carcinoma (NSCLC). The pro-apoptotic BCL-2 family proteins BAX and BAK are critical regulators of mitochondrial apoptosis. New strategies for targeting NSCLC in a mitochondria-independent manner should bypass this common mechanism of apoptosis block. BRCA1 mutation frequency in lung cancer is low; however, decreased BRCA1 mRNA and protein expression levels have been reported in a significant proportion of lung adenocarcinomas. BRCA1 mutation/deficiency confers a defect in homologous recombination DNA repair that has been exploited by synthetic lethality through inhibition of PARP (PARPi) in breast and ovarian cells; however, it is not known whether this same synthetic lethal mechanism exists in NSCLC cells. Additionally, it is unknown whether the mitochondrial apoptotic pathway is required for BRCA1/PARPi-mediated synthetic lethality. Here we demonstrate that silencing of BRCA1 expression by RNA interference sensitizes NSCLC cells to PARP inhibition. Importantly, this sensitivity was not attenuated in cells harbouring mitochondrial apoptosis block induced by co-depletion of BAX and BAK. Furthermore, we demonstrate that BRCA1 inhibition cannot override platinum resistance, which is often mediated by loss of mitochondrial apoptosis signalling, but can still sensitize to PARP inhibition. Finally we demonstrate the existence of a BRCA1-deficient subgroup (11-19%) of NSCLC patients by analysing BRCA1 protein levels using immunohistochemistry in two independent primary NSCLC cohorts. Taken together, the existence of BRCA1-immunodeficient NSCLC suggests that this molecular subgroup could be effectively targeted by PARP inhibitors in the clinic and that PARP inhibitors could be used for the treatment of BRCA1-immunodeficient, platinum-resistant tumours. Copyright (C) 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Resumo:
Bax's Fourth is the only one of his symphonies that alludes explicitly to an extramusical stimulus: 'a rough sea at flood-tide on a sunny day'. This essay contextualizes Bax's frequent use of sea imagery throughout his oeuvre, noting in particular the peripherality of the composer's observation of the sea from the liminal position of the shore. It then considers how the idea of the sea in the Fourth Symphony is related to several musical features (motivic coherence, thematic expansion, formal anomalies), and how the sea is central to the underlying conflict in the work between nature and humanity.