907 resultados para batch changeover
Resumo:
Tutkittu yritys on suomalainen maaleja ja lakkoja kansainvälisesti valmistava ja myyvä toimija. Yrityksessä otettiin vuonna 2010 käyttöön uudet tuotannon ja toimitusketjun tavoitteet ja suunnitelmat ja tämä tutkimus on osa tuota kokonaisvaltaista kehittämissuuntaa. Tutkimuksessa käsitellään tuotannon ja kunnossapidon tehokkuuden parantamis- ja mittaustyökalu OEE:tä ja tuotevaihtoaikojen pienentämiseen tarkoitettua SMED -työkalua. Työn teoriaosuus perustuu lähinnä akateemisiin julkaisuihin, mutta myös haastatteluihin, kirjoihin, internet sivuihin ja yhteen vuosikertomukseen. Empiriaosuudessa OEE:n käyttöönoton ongelmia ja onnistumista tutkittiin toistettavalla käyttäjäkyselyllä. OEE:n potentiaalia ja käyttöönottoa tutkittiin myös tarkastelemalla tuotanto- ja käytettävyysdataa, jota oli kerätty tuotantolinjalta. SMED:iä tutkittiin siihen perustuvan tietokoneohjelman avulla. SMED:iä tutkittiin teoreettisella tasolla, eikä sitä implementoitu vielä käytäntöön. Tutkimustuloksien mukaan OEE ja SMED sopivat hyvin esimerkkiyritykselle ja niissä on paljon potentiaalia. OEE ei ainoastaan paljasta käytettävyyshäviöiden määrää, mutta myös niiden rakenteen. OEE -tulosten avulla yritys voi suunnata rajalliset tuotannon ja kunnossapidon parantamisen resurssit oikeisiin paikkoihin. Työssä käsiteltävä tuotantolinja ei tuottanut mitään 56 % kaikesta suunnitellusta tuotantoajasta huhtikuussa 2016. Linjan pysähdyksistä ajallisesti 44 % johtui vaihto-, aloitus- tai lopetustöistä. Tuloksista voidaan päätellä, että käytettävyyshäviöt ovat vakava ongelma yrityksen tuotannontehokkuudessa ja vaihtotöiden vähentäminen on tärkeä kehityskohde. Vaihtoaikaa voitaisiin vähentää ~15 % yksinkertaisilla ja halvoilla SMED:illä löydetyillä muutoksilla työjärjestyksessä ja työkaluissa. Parannus olisi vielä suurempi kattavimmilla muutoksilla. SMED:in suurin potentiaali ei välttämättä ole vaihtoaikojen lyhentämisessä vaan niiden standardisoinnissa.
Resumo:
The importance of the changeover process in the manufacturing industry is becoming widely recognised. Changeover is a complete process of changing between the manufacture of one product to manufacture of an alternative product until specified production and quality rates are reached. The initiatives to improve changeover exist in industry, as better changeover process typically contribute to improved quality performance. A high-quality and reliable changeover process can be achieved through implementation of continuous or radical improvements. This research examines the changeover process of Saudi Arabian manufacturing firms because Saudi Arabia’s government is focused on the expansion of GDP and increasing the number of export manufacturing firms. Furthermore, it is encouraging foreign manufacturing firms to invest within Saudi Arabia. These initiatives, therefore, require that Saudi manufacturing businesses develop the changeover practice in order to compete in the market and achieve the government’s objectives. Therefore, the aim of this research is to discover the current status of changeover process implementation in Saudi Arabian manufacturing businesses. To achieve this aim, the main objective of this research is to develop a conceptual model to understand and examine the effectiveness of the changeover process within Saudi Arabian manufacturing firms, facilitating identification of those activities that affect the reliability and high-quality of the process. In order to provide a comprehensive understanding of this area, this research first explores the concept of quality management and its relationship to firm performance and the performance of manufacturing changeover. An extensive body of literature was reviewed on the subject of lean manufacturing and changeover practice. A research conceptual model was identified based on this review, and focus was on providing high-quality and reliable manufacturing changeover processes during set-up in a dynamic environment. Exploratory research was conducted in sample Saudi manufacturing firms to understand the features of the changeover process within the manufacturing sector, and as a basis for modifying the proposed conceptual model. Qualitative research was employed in the study with semi-structured interviews, direct observations and documentation in order to understand the real situation such as actual daily practice and current status of changeover process in the field. The research instrument, the Changeover Effectiveness Assessment Tool (CEAT) was developed to evaluate changeover practices. A pilot study was conducted by examining the CEAT, proposed for the main research. Consequently, the conceptual model was modified and CEAT was improved in response to the pilot study findings. Case studies have been conducted within eight Saudi manufacturing businesses. These case studies assessed the implementation of manufacturing changeover practice in the lighting and medical products sectors. These two sectors were selected based on their operation strategy which was batch production as well as the fact that they fulfilled the research sampling strategy. The outcomes of the research improved the conceptual model, ultimately to facilitate the firms’ adoption and rapid implementation of a high-quality and reliability changeover during the set-up process. The main finding of this research is that Quality’s factors were considering the lowest levels comparing to the other factors which are People, Process and Infrastructure. This research contributes to enable Saudi businesses to implement the changeover process by adopting the conceptual model. In addition, the guidelines for facilitating implementation were provided in this thesis. Therefore, this research provides insight to enable the Saudi manufacturing industry to be more responsive to rapidly changing customer demands.
Resumo:
Bid opening in e-auction is efficient when a homomorphic secret sharing function is employed to seal the bids and homomorphic secret reconstruction is employed to open the bids. However, this high efficiency is based on an assumption: the bids are valid (e.g., within a special range). An undetected invalid bid can compromise correctness and fairness of the auction. Unfortunately, validity verification of the bids is ignored in the auction schemes employing homomorphic secret sharing (called homomorphic auction in this paper). In this paper, an attack against the homomorphic auction in the absence of bid validity check is presented and a necessary bid validity check mechanism is proposed. Then a batch cryptographic technique is introduced and applied to improve the efficiency of bid validity check.
Resumo:
The material presented in this thesis may be viewed as comprising two key parts, the first part concerns batch cryptography specifically, whilst the second deals with how this form of cryptography may be applied to security related applications such as electronic cash for improving efficiency of the protocols. The objective of batch cryptography is to devise more efficient primitive cryptographic protocols. In general, these primitives make use of some property such as homomorphism to perform a computationally expensive operation on a collective input set. The idea is to amortise an expensive operation, such as modular exponentiation, over the input. Most of the research work in this field has concentrated on its employment as a batch verifier of digital signatures. It is shown that several new attacks may be launched against these published schemes as some weaknesses are exposed. Another common use of batch cryptography is the simultaneous generation of digital signatures. There is significantly less previous work on this area, and the present schemes have some limited use in practical applications. Several new batch signatures schemes are introduced that improve upon the existing techniques and some practical uses are illustrated. Electronic cash is a technology that demands complex protocols in order to furnish several security properties. These typically include anonymity, traceability of a double spender, and off-line payment features. Presently, the most efficient schemes make use of coin divisibility to withdraw one large financial amount that may be progressively spent with one or more merchants. Several new cash schemes are introduced here that make use of batch cryptography for improving the withdrawal, payment, and deposit of electronic coins. The devised schemes apply both to the batch signature and verification techniques introduced, demonstrating improved performance over the contemporary divisible based structures. The solutions also provide an alternative paradigm for the construction of electronic cash systems. Whilst electronic cash is used as the vehicle for demonstrating the relevance of batch cryptography to security related applications, the applicability of the techniques introduced extends well beyond this.
Resumo:
The effects of oxygen availability and induction culture biomass upon production of an industrially important monoamine oxidase (MAO) were investigated in fed-batch cultures of a recombinant E. coli. For each induction cell biomass 2 different oxygenation methods were used, aeration and oxygen enriched air. Induction at higher biomass levels increased the culture demand for oxygen, leading to fermentative metabolism and accumulation of high levels of acetate in the aerated cultures. Paradoxically, despite an almost eight fold increase in acetate accumulation to levels widely reported to be highly detrimental to protein production, when induction wet cell weight (WCW) rose from 100% to 137.5%, MAO specific activity in these aerated processes showed a 3 fold increase. By contrast, for oxygenated cultures induced at WCW's 100% and 137.5% specific activity levels were broadly similar, but fell rapidly after the maxima were reached. Induction at high biomass levels (WCW 175%) led to very low levels of specific MAO activity relative to induction at lower WCW's in both aerated and oxygenated cultures. Oxygen enrichment of these cultures was a useful strategy for boosting specific growth rates, but did not have positive effects upon specific enzyme activity. Based upon our findings, consideration of the amino acid composition of MAO and previous studies on related enzymes, we propose that this effect is due to oxidative damage to the MAO enzyme itself during these highly aerobic processes. Thus, the optimal process for MAO production is aerated, not oxygenated, and induced at moderate cell density, and clearly represents a compromise between oxygen supply effects on specific growth rate/induction cell density, acetate accumulation, and high specific MAO activity. This work shows that the negative effects of oxygen previously reported in free enzyme preparations, are not limited to these acellular environments but are also discernible in the sheltered environment of the cytosol of E. coli cells.
Resumo:
A dynamic accumulator is an algorithm, which gathers together a large set of elements into a constant-size value such that for a given element accumulated, there is a witness confirming that the element was indeed included into the value, with a property that accumulated elements can be dynamically added and deleted into/from the original set such that the cost of an addition or deletion operation is independent of the number of accumulated elements. Although the first accumulator was presented ten years ago, there is still no standard formal definition of accumulators. In this paper, we generalize formal definitions for accumulators, formulate a security game for dynamic accumulators so-called Chosen Element Attack (CEA), and propose a new dynamic accumulator for batch updates based on the Paillier cryptosystem. Our construction makes a batch of update operations at unit cost. We prove its security under the extended strong RSA (es-RSA) assumption
Resumo:
This paper presents stylized models for conducting performance analysis of the manufacturing supply chain network (SCN) in a stochastic setting for batch ordering. We use queueing models to capture the behavior of SCN. The analysis is clubbed with an inventory optimization model, which can be used for designing inventory policies . In the first case, we model one manufacturer with one warehouse, which supplies to various retailers. We determine the optimal inventory level at the warehouse that minimizes total expected cost of carrying inventory, back order cost associated with serving orders in the backlog queue, and ordering cost. In the second model we impose service level constraint in terms of fill rate (probability an order is filled from stock at warehouse), assuming that customers do not balk from the system. We present several numerical examples to illustrate the model and to illustrate its various features. In the third case, we extend the model to a three-echelon inventory model which explicitly considers the logistics process.
Resumo:
The work reported herein is part of an on-going programme to develop a computer code which, given the geometrical, process and material parameters of the forging operation, is able to predict the die and the billet cooling/heating characteristics in forging production. The code has been experimentally validated earlier for a single forging cycle and is now validated for a small batch production. To facilitate a step-by-step development of the code, the billet deformation has so far been limited to its surface layers, a situation akin to coining. The code has been used here to study the effects of die preheat-temperature, machine speed and rate of deformation the cooling/heating of the billet and the dies over a small batch of 150 forgings. The study shows: that there is a pre-heat temperature at which the billet temperature changes little from one forging to the next; that beyond a particular number of forgings, the machine speed ceases to have any pronounced influence on the temperature characteristics of the billet; and that increasing the rate of deformation reduces the heat loss from the billet and gives the billet a stable temperature profile with respect to the number of forgings. The code, which is simple to use, is being extended to bulk-deformation problems. Given a practical range of possible machine, billet and process specifics, the code should be able to arrive at a combination of these parameters which will give the best thermal characteristics of the die-billet system. The code is also envisaged as being useful in the design of isothermal dies and processes.
Resumo:
A change-over from SN2(P) to SN1(P) mechanism is established for the chlorine replacement reactions of halogenocyclophosphazenes; this mechanistic change-over helps in rationalising the diverse findings reported for this class of reactions.
Resumo:
The impact of erroneous genotypes having passed standard quality control (QC) can be severe in genome-wide association studies, genotype imputation, and estimation of heritability and prediction of genetic risk based on single nucleotide polymorphisms (SNP). To detect such genotyping errors, a simple two-locus QC method, based on the difference in test statistic of association between single SNPs and pairs of SNPs, was developed and applied. The proposed approach could detect many problematic SNPs with statistical significance even when standard single SNP QC analyses fail to detect them in real data. Depending on the data set used, the number of erroneous SNPs that were not filtered out by standard single SNP QC but detected by the proposed approach varied from a few hundred to thousands. Using simulated data, it was shown that the proposed method was powerful and performed better than other tested existing methods. The power of the proposed approach to detect erroneous genotypes was approximately 80% for a 3% error rate per SNP. This novel QC approach is easy to implement and computationally efficient, and can lead to a better quality of genotypes for subsequent genotype-phenotype investigations.
Resumo:
Antimicrobial resistance in bacterial porcine respiratory pathogens has been shown to exist in many countries. However, little is known about the variability in antimicrobial susceptibility within a population of a single bacterial respiratory pathogen on a pig farm. This study examined the antimicrobial susceptibility of Actinobacillus pleuropneumoniae using multiple isolates within a pig and across the pigs in three different slaughter batches. Initially, the isolates from the three batches were identified, serotyped, and subsample genotyped. All the 367 isolates were identified as A. pleuropneumoniae serovar 1, and only a single genetic profile was detected in the 74 examined isolates. The susceptibility of the 367 isolates of A. pleuropneumoniae to ampicillin, tetracycline and tilmicosin was determined by a disc diffusion technique. For tilmicosin, the three batches were found to consist of a mix of susceptible and resistant isolates. The zone diameters of the three antimicrobials varied considerably among isolates in the second sampling. In addition, the second sampling provided statistically significant evidence of bimodal populations in terms of zone diameters for both tilmicosin and ampicillin. The results support the hypothesis that the antimicrobial susceptibility of one population of a porcine respiratory pathogen can vary within a batch of pigs on a farm.
Resumo:
Wear of dies is a serious problem in the forging industry. The materials used for the dies are generally expensive steel alloys and the dies require costly heat treatment and surface finishing operations. Degeneration of the die profile implies rejection of forged components and necessitates resinking or replacement of the die. Measures which reduce wear of the die can therefore aid in the reduction of production costs. The work reported here is the first phase of a study of the causes of die wear in forging production where the batch size is small and the machine employed is a light hammer. This is a problem characteristic of the medium and small scale area of the forging industry where the cost of dies is a significant proportion of the total capital investment. For the same energy input and under unlubricated conditions, die wear has been found to be sensitive to forging temperature; in cold forging the yield strength of the die material is the prime factor governing the degeneration of the die profile, whilst in hot forging the wear resistance of the die material is the main factor which determines the rate of die wear. At an intermediate temperature, such as that characteristic of warm forging, the die wear is found to be less than that in both cold and hot forging. This preliminary study therefore points to the fact that the forging temperature must be taken into account in the selection of die material. Further, the forging industry must take serious note of the warm forging process, as it not only provides good surface finish, as claimed by many authors, but also has an inherent tendency to minimize die wear.
Resumo:
In this work, we evaluate the benefits of using Grids with multiple batch systems to improve the performance of multi-component and parameter sweep parallel applications by reduction in queue waiting times. Using different job traces of different loads, job distributions and queue waiting times corresponding to three different queuing policies(FCFS, conservative and EASY backfilling), we conducted a large number of experiments using simulators of two important classes of applications. The first simulator models Community Climate System Model (CCSM), a prominent multi-component application and the second simulator models parameter sweep applications. We compare the performance of the applications when executed on multiple batch systems and on a single batch system for different system and application configurations. We show that there are a large number of configurations for which application execution using multiple batch systems can give improved performance over execution on a single system.