995 resultados para basic carbonate-4-dimethylaminocinnamylidenepyruvate


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid Ln-OKCO3-DMCP compounds, where Ln represents lanthanides (III) and yttrium (III) ions and DMCP is the anion 4-dimethyiaminocinnamylidenepyruvate, have been prepared. Thermogravimetry, derivative thermogravimetry (TG, DTG), differential scanning calorimetry (DSC), X-ray diffraction powder patterns and elemental analysis have been used to characterize the compounds. The thermal stability as well as the thermal decomposition of these compounds were studied using an alumina crucible in an air atmosphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raman spectrum of callaghanite, Cu2Mg2(CO3)(OH)6⋅2H2O, was studied and compared with published Raman spectra of azurite, malachite and hydromagnesite. Stretching and bending vibrations of carbonate and hydroxyl units and water molecules were tentatively assigned. Approximate O–H…O hydrogen bond lengths were inferred from the spectra. Because of the high content of hydroxyl ions in the crystal structure in comparison with low content of carbonate units, callaghanite should be better classified as a carbonatohydroxide than a hydroxycarbonate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raman spectroscopy complimented with infrared spectroscopy has been used to study the rare earth based mineral huanghoite with possible formula given as BaCe(CO3)2F and compared with the Raman spectra of a series of selected natural halogenated carbonates from different origins including bastnasite, parisite and northupite. The Raman spectrum of huanghoite displays three bands are at 1072, 1084 and 1091 cm−1 attributed to the symmetric stretching vibration. The observation of three symmetric stretching vibrations is very unusual. The position of symmetric stretching vibration varies with mineral composition. Infrared spectroscopy of huanghoite show bands at 1319, 1382, 1422 and 1470 cm−1. No Raman bands of huanghoite were observed in these positions. Raman spectra of bastnasite, parisite and northupite show a single band at 1433, 1420 and 1554 cm−1 assigned to the ν3 (CO3)2− antisymmetric stretching mode. The observation of additional Raman bands for the ν3 modes for some halogenated carbonates is significant in that it shows distortion of the carbonate anion in the mineral structure. Four Raman bands for huanghoite are observed at 687, 704, 718 and 730 cm−1and assigned to the (CO3)2− ν2 bending modes. Raman bands are observed for huanghoite at around 627 cm−1 and are assigned to the (CO3)2− ν4 bending modes. Raman bands are observed for the carbonate ν4 in phase bending modes at 722 cm−1 for bastnasite, 736 and 684 cm−1 for parisite, 714 cm−1 for northupite. Raman bands for huanghoite observed at 3259, 3484 and 3589 cm−1 are attributed to water stretching bands. Multiple bands are observed in the OH stretching region for bastnasite and parisite indicating the presence of water and OH units in their mineral structure. Vibrational spectroscopy enables new information on the structure of huanghoite to be assessed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gadolinium oxysulfide powders doped with different Tb3+ concentrations were prepared from sulfur vaporization on rare earths' basic carbonate precursors. Single-phase Gd2O2S samples were obtained, with Tb3+ doping up to 9 at%. The study of the excitation mechanisms revealed that the Tb3+ emission might occur after the direct Tb3+ excitation either by energy transfer from Gd3+ or from the phosphor host. The characteristic terbium emission lines were observed, resulting from the radiative decay from D-5(3) or D-5(4), to F-7(j) levels. The cross-relaxation phenomenon was observed and its effects on the materials emission color were discussed based on the CIE diagram. By using time-resolved spectroscopy, D-5(3) -> F-7(J) and D-5(4) -> F-7(J) transitions were separated. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work reports on the preparation, structural and luminescent studies of nanosized up-converter phosphors Y2O2S:Yb(4%), Er(0.1%) and Y2O2S:Yb(4%), Tm(0.1%),both from polymeric and basic carbonate precursors. The precursors were submitted to a sulphuration process that was previously developed for oxysulfide preparation from basic carbonate. From XRD data, all phosphors presented the oxysulfide phase and the mean crystallite size estimated from the Scherrer formula in the range of 15-20 nm. Polymeric precursor leads to the smallest crystallite size independent on the doping ion. SEM and TEM results confirmed that basic carbonate leads to spherical particles with narrow size distribution and mean diameter of 150 nm, and polymeric precursor smaller spherical particles with diameter between 20 and 40 nm. Up-conversion studies under 980 nm laser excitation showed that Er-doped phosphors present strong green emission related to H-2(11/2), S-4(3/2) --> I-4(15/2) Er transitions as well as the red ones, F-4(9/2) --> I-4(15/2). Tm-doped samples show strong blue emission assigned to (1)G(4) --> H-3(6) and also the red ones, related to (1)G(4) --> F-3(4). Therefore, the sulphuration method was successfully applied to prepare nanosized and nanostructured blue and green up-converter oxysulfide phosphors starting from basic carbonate and polymeric precursors. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we report luminescent and morphological studies with yttrium oxide samples doped with ytterbium and erbium. The samples were prepared by the combustion method and also from different precursors: oxalate, basic carbonate and polymeric resin. All powders were identified Lis being an yttrium oxide with a C-form structure, independent of the employed precursor. From mean crystallite size measurements, it was verified that oxides prepared through the polymeric precursor and combustion methods lead to the smallest crystallite size. Particle shape and size were investigated by SEM and TEM, and showed that both the oxalate precursor and the combustion methods do not provide oxide materials of suitable shape or size, on the other hand. The basic carbonate and polymeric precursors resulted in spherically shaped particles with an average diameter of 90 and 15 run. respectively, Upon 980 run diode laser excitation, green and red emission lines were detected for all samples and were assigned to the H-2(11/2) S-4(3/2) -> I-4(15/2) and (4)Fg(9/2) -> 4I(15/12) transitions, respectively. Such transitions are characteristic for Er3+ and result from energy transfer from Yb3+ energy levels, F-2(7/2) -> F-2(5/2). A relationship between the decrease in the mean crystallite size and the enhancement in red emission was also established as well as the influence of the presence of a high percentage of Yb-3 Both factors promote ET from Yb3+ (F-2(5/2)) to Er3+ (I-4(11/2)). (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nominally pure Gd2O3 C-form structure from basic carbonate fine spherical particles and its differences concerning the XRD data among literature patterns using Rietveld method is reported. Gd2O3: Eu3+ from basic carbonate and Gd2O3 from oxalate were also investigated. All samples, except the one from oxalate precursor, are narrow sized, 100-200 nm. Only non-doped Gd2O3 from basic carbonate presents XRD data with smaller d(hkl) values than the literature ones. From Rietveld refinement, non-doped Gd2O3 from basic carbonate has the smallest crystallite size and from oxalate shows the greatest one. Also, the unit cell parameters indicate a plan contraction of the Gd2O3 from basic carbonate. The presence of Eu3+ increases crystallite size when basic carbonate precursor is used to prepare Gd2O3 and avoids plan contraction. The structural differences observed among Gd2O3 samples obtained are related to the type of precursor and to the presence or not of doping ion. (C) 2003 Elsevier B.V. (USA). All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermogravimetry, differential thermal analysis, differential scanning calorimetry, IR absorption spectroscopy, X-ray diffraction, and other methods of analysis have been used in the characterization and study of the thermal decomposition of the basic carbonate hydrates of lanthanides and yttrium. These compounds were obtained by precipitation from homogeneous solutions via the hydrolysis of urea, without the addition of an auxiliary anion. The results show that the TG and DTA curves are characteristic for each compound. The results also permit suggestions concerning the compositions and mechanisms of thermal decomposition of these compounds. © 1989.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The basic carbonates of lanthanum with 10%, 20%, 50% and 80% of europium were prepared by precipitation from homogeneous solutions via the hydrolysis of urea, without the addition of an auxiliary anion, at two different temperatures. Elemental analysis, complexometric methods, X-ray diffraction patterns, solid state IR absorption, thermogravimetry/derivative thermogravimetry (TG/DTG) and differential thermal analysis (DTA) were used to characterise the compounds and study their thermal behaviour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raman spectroscopy complimented with infrared spectroscopy has been used to study the rare earth based mineral decrespignyite (Y,REE)4Cu(CO3)4Cl(OH)5•2(H2O) and compared with the Raman spectra of a series of selected natural halogenated carbonates from different origins including bastnasite, parisite and northupite. The Raman spectrum of decrespignyite displays three bands are at 1056, 1070 and 1088 cm-1 attributed to the CO32- symmetric stretching vibration. The observation of three symmetric stretching vibrations is very unusual. The position of CO32- symmetric stretching vibration varies with mineral composition. Raman bands of decrespignyite show bands at 1391, 1414, 1489 and 1547 cm-1. Raman spectra of bastnasite, parisite and northupite show a single band at 1433, 1420 and 1554 cm-1 assigned to the ν3 (CO3)2- antisymmetric stretching mode. The observation of additional Raman bands for the ν3 modes for some halogenated carbonates is significant in that it shows distortion of the carbonate anion in the mineral structure. Four Raman bands are observed at 791, 815, 837 and 849 cm-1and assigned to the (CO3)2- ν2 bending modes. Raman bands are observed for decrespignyite at 694, 718 and 746 cm-1 and are assigned to the (CO3)2- ν4 bending modes. Raman bands are observed for the carbonate ν4 in phase bending modes at 722 cm-1 for bastnasite, 736 and 684 cm-1 for parisite, 714 cm-1 for northupite. Multiple bands are observed in the OH stretching region for decrespignyite, bastnasite and parisite indicating the presence of water and OH units in the mineral structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An information system for inductively coupled plasma atomic emission spectrometry (TCP-BES) in MS Windows environment was developed based on the previous work in the laboratory. The system contains the data of about 28 000 spectral lines and a function of ICP spectral simulation,so it would be very helpful for line selection. The system also contains the Kalman filter and factor analysis programmes written with MS Visual Basic(version 4.0), which can be used for spectral interference correction and peak position optimization. A large amount of real spectral scanning data of rare earth elements were included in the system for user's references. All these characteristics made the system more useful and practical.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The preparation of spherical Y2O2S and Y2O2S:Eu particles using a solid-gas reaction of monodispersed precursors with elemental sulfur vapor under an argon atmosphere has been investigated. The precursors, undoped and doped yttrium basic carbonates, are synthesized by aging a stock solution containing the respective cation chloride and urea at 82-84 °C. Y2O2S and Y2O2S:Eu were characterized in terms of their composition, crystallinity and morphology by chemical analysis, X-ray powder diffraction (XRD), IR spectroscopy, and scanning electron microscopy (SEM). The Eu-doped oxysulfide was also characterized by atomic absorption spectrophotometry and luminescence spectroscopy. The spherical morphology of oxysulfide products and of basic carbonate precursors suggests a topotatic inter-relationship between both compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)