999 resultados para basalt source


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pebble-sized basaltic and glassy clasts were extracted from seamount-derived volcaniclastic debris flows and analyzed for various trace elements, including the rare earths, to determine their genetic relationships and provenance. All the clasts were originally derived from relatively shallow submarine lava flows prior to sedimentary reworking, and have undergone minor low-grade alteration. They are classified into three petrographic groups (A, B, and C) characterized by different phenocryst assemblages and variable abundances and ratios of incompatible elements. Group A (clast from Hole 585) is a hyaloclastite fragment which is olivine-normative and distinct from the other clasts, with incompatibleelement ratios characteristic of transitional or alkali basalts. Groups B and C (clasts from Hole 585A) are quartz-normative, variably plagioclase-clinopyroxene-olivine phyric tholeiites, all with essentially similar ratios of highly incompatible elements and patterns of enrichment in light rare earth elements (chrondrite-normalized). Variation within Groups B and C was governed by low-pressure fractionation of the observed phenocryst phases, whereas the most primitive compositions of each group may be related by variable partial melting of a common source. The clasts have intraplate chemical characteristics, although relative to oceanic hot-spot-related volcanics (e.g., Hawaiian tholeiites) they are marginally depleted in most incompatible elements. The source region was enriched in all incompatible elements, compared with a depleted mid-ocean-ridge basalt source.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ocean Drilling Program Legs 127 and 128 in the Yamato Basin of the Japan Sea, a Miocene-age back-arc basin in the western Pacific Ocean, recovered incompatible-element-depleted and enriched tholeiitic dolerites and basalts from the basin floor, which provide evidence of a significant sedimentary component in their mantle source. Isotopically, the volcanic rocks cover a wide range of compositions (e.g., 87Sr/86Sr = 0.70369 - 0.70503, 206Pb/204Pb = 17.65 - 18.36) and define a mixing trend between a depleted mantle (DM) component and an enriched component with the composition of EM II. At Site 797, the combined isotope and trace element systematics support a model of two component mixing between depleted, MORB-like mantle and Pacific pelagic sediments. A best estimate of the composition of the sedimentary component has been determined by analyzing samples of differing lithology from DSDP Sites 579 and 581 in the western Pacific, east of the Japan arc. The sediments have large depletions in the high field strength elements and are relatively enriched in the large-ion-lithophile elements, including Pb. These characteristics are mirrored, with reduced amplitudes, in Japan Sea enriched tholeiites and northeast Japan arc lavas, which strengthens the link between source enrichment and subducted sediments. However, Site 579/581 sediments have higher LILE/REE and lower HFSE/REE than the enriched component inferred fiom mixing trends at Site 797. Sub-arc devolatilization of the sediments is a process that will lower LILE/REE and raise HFSE/REE in the residual sediment, and thus this residual sediment may serve as the enriched component in the back-arc basalt source. Samples from other potential sources of an enriched, EM II-like component beneath Japan, such as the subcontinental lithosphere or crust, have isotopic compositions which overlap those of the Japan Sea tholeiites and are not "enriched" enough to be the EM II end-member.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Samples collected from the coarse basal portions of mid-Cretaceous volcaniclastic turbidites from the Mariana and Pigafetta basins are remarkably similar in terms of the petrographic and chemical features of their igneous clasts and bulk rock composition. Clasts of magmatic origin are dominated by glassy vesicular shards, variably phyric, holocrystalline basalts, and crystal fragments (olivine, clinopyroxene, plagioclase, amphibole, and biotite). The composition of the pyroxenes and amphiboles are typical of those found in differentiated hydrous alkali basalts. The bulk chemical composition of the volcaniclastites (based on stable incompatible elements and their ratios in highly vitric samples) is characteristic of alkali basalts found in within-plate oceanic eruptive environments. Miocene volcaniclastites from Site 802 are broadly similar to the Cretaceous samples in terms of clast type and bulk composition, and have also been derived from an oceanic alkali basalt source. The chemistry of the Miocene volcaniclastites differ, however, in having distinctive Zr/Y and Zr/Nb ratios and a more restricted chemical composition. The magmatic products of nearly emergent seamounts within the western Pacific basins appears to have been dominated by alkali basalt volcanism during the mid-Cretaceous and also the Miocene. The highly vitric nature of the Cretaceous and Miocene volcaniclastites, together with the morphology and vesicularity of their shards, suggests that they are the reworked (via mass flow) products of hyaloclastite accumulations produced in a shallow-water eruptive environment, such as that adjacent to nearly emergent seamounts or ocean islands. The association of ooids, reefal debris, and, in rare cases, woody material with the volcaniclastites supports their shallow-water derivation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

143Nd/144Nd ratios have been determined on 37 samples of oceanic basalt, with a typical precision of +/- 2-3 * 10**-5 (2 sigma). Ocean island and dredged and cored submarine basalts are included for which reliable measurements of 87Sr/86Sr ratios exist in the literature or have been measured as part of this study. A strong negative correlation exists between 143Nd/144Nd and 87Sr/86Sr ratios in basalts from Iceland and the Reykjanes Ridge, but such a clear correlation does not exist for samples from the Hawaiian Islands. However, when other ocean island basalts from the Atlantic are included there is an overall correlation between these two parameters. Increases and decreases in Rb/Sr in oceanic basalt source regions have in general been accompanied by decreases and increases respectively in Sm/Nd ratios. The compatibility of the data with single-stage models is assessed and it is concluded that enrichment and depletion events, which are consistent with transfer of silicate melts, are responsible for the observed variation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report major and trace element composition, Sr–Nd isotopic and seismological data for a picrite–basalt–rhyolite suite from the northern Tarim uplift (NTU), northwest China. The samples were recovered from 13 boreholes at depths between 5,166 and 6,333 m. The picritic samples have high MgO (14.5–16.8 wt%, volatiles included) enriched in incompatible element and have high 87Sr/86Sr and low 143Nd/144Nd isotopic ratios (εNd (t) = −5.3; Sri = 0.707), resembling the Karoo high-Ti picrites. All the basaltic samples are enriched in TiO2 (2.1–3.2 wt%, volatiles free), have high FeOt abundances (11.27–15.75 wt%, volatiles free), are enriched in incompatible elements and have high Sr and low Nd isotopic ratios (Sri = 0.7049–0.7065; εNd (t) = −4.1 to −0.4). High Nb/La ratios (0.91–1.34) of basalts attest that they are mantle-derived magma with negligible crustal contamination. The rhyolite samples can be subdivided into two coeval groups with overlapping U–Pb zircon ages between 291 ± 4 and 272 ± 2 Ma. Group 1 rhyolites are enriched in Nb and Ta, have similar Nb/La, Nb/U, and Sr–Nd isotopic compositions to the associated basalts, implying that they are formed by fractional crystallization of the basalts. Group 2 rhyolites are depleted in Nb and Ta, have low Nb/La ratios, and have very high Sr and low Nd isotopic ratios, implying that crustal materials have been extensively, if not exclusively, involved in their source. The picrite–basalt–rhyolite suite from the NTU, together with Permian volcanic rocks from elsewhere Tarim basin, constitute a Large Igneous Province (LIP) that is characterized by large areal extent, rapid eruption, OIB-type chemical composition, and eruption of high temperature picritic magma. The Early Permian magmatism, which covered an area >300,000 km2, is therefore named the Tarim Flood Basalt.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DSDP Hole 504B is the deepest section drilled into oceanic basement, penetrating through a 571.5-m lava pile and a 209-m transition zone of lavas and dikes into 295 m of a sheeted dike complex. To define the basement composition 194 samples of least altered basalts, representing all lithologic units, were analyzed for their major and 26 trace elements. As is evident from the alteration-sensitive indicators H2O+, CO2, S, K, Mn, Zn, Cu, and the iron oxidation ratio, all rocks recovered are chemically altered to some extent. Downhole variation in these parameters enables us to distinguish five depth-related alteration zones that closely correlate with changes in alteration mineralogy. Alteration in the uppermost basement portion is characterized by pronounced K-uptake, sulfur loss, and iron oxidation and clearly demonstrates low-temperature seawater interaction. A very spectacular type of alteration is confined to the depth range from 910 to 1059 m below seafloor (BSF). Rocks from this basement portion exhibit the lowest iron oxidation, the highest H2O+ contents, and a considerable enrichment in Mn, S, Zn, and Cu. At the top of this zone a stockwork-like sulfide mineralization occurs. The chemical data suggest that this basement portion was at one time within a hydrothermal upflow zone. The steep gradient in alteration chemistry above this zone and the ore precipitation are interpreted as the result of mixing of the upflowing hydrothermal fluids with lower-temperature solutions circulating in the lava pile. Despite the chemical alteration the primary composition and variation of the rocks can be reliably established. All data demonstrate that the pillow lavas and the dikes are remarkably uniform and display almost the same range of variation. A general characteristic of the rocks that classify as olivine tholeiites is their high MgO contents (up to 10.5 wt.%) and their low K abundances (-200 ppm). According to their mg-values, which range from 0.60 to 0.74, most basalts appear to have undergone some high-level crystal fractionation. Despite the overall similarity in composition, there are two major basalt groups that have significantly different abundances and ratios of incompatible elements at similar mg-values. The majority of the basalts from the pillow lava and dike sections are chemically closely related, and most probably represent differentiation products of a common parental magma. They are low in Na2O, TiO2, and P2O5, and very low in the more hygromagmaphile elements. Interdigitated with this basalt group is a very rarely occurring basalt that is higher in Na2O, TiO2, P2O5, much less depleted in hygromagmaphile elements, and similar to normal mid-ocean ridge basalt (MORB). The latter is restricted to Lithologic Units 5 and 36 of the pillow lava section and Lithologic Unit 83 of the dike section. The two basalt groups cannot be related by differentiation processes but have to be regarded as products of two different parental magmas. The compositional uniformity of the majority of the basalts suggests that the magma chamber beneath the Costa Rica Rift reached nearly steady-state conditions. However, the presence of lavas and dikes that crystallized from a different parental magma requires the existence of a separate conduit-magma chamber system for these melts. Occasionally mixing between the two magma types appears to have occurred. The chemical characteristics of the two magma types imply some heterogeneity in the mantle source underlying the Costa Rica Rift. The predominant magma type represents an extremely depleted source, whereas the rare magma type presumably originated from regions of less depleted mantle material (relict or affected by metasomatism).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Densities of layer 2 basalt recovered during the Deep Sea Drilling Project have been found to decrease steadily with age, a finding ascribed to progressive submarine weathering in the context of sea-floor spreading. The least-squares solution for 52 density measurements gives a rate of decrease in density of (Delta p)/(Delta t) = -0.0046 g per ccm m.y. = -16 percent per 100 m.y., which is in excellent agreement with earlier estimates based on observed chemical depletion rates of dredged oceanic basalt. Weathering of sea-floor basalt, should it penetrate to any considerable depth in layer 2, will decrease layer 2 seismic refraction velocities, act as a source of geothermal heat, and substantially influence the chemistry of sea water and the overlying column of sediment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Lower Cretaceous tholeiitic basalt cored at Site 738, on the southernmost part of the Kerguelen Plateau, shows anomalous Sr, Nd, and Pb isotopic compositions compared to other lavas from Kerguelen Island and the Kerguelen Plateau. The strongly negative value of eNd (- 8.5) and high 207Pb/204Pb ratio (15.71) reflect a long-term evolution in a source high in Nd/Sm and µ. These geochemical properties, not observed in the Indian Ocean mantle plumes (St. Paul, Kerguelen Islands), have been reported for alkali lavas erupted in East Antarctica, thus suggesting that they originate from the Gondwana subcontinental lithosphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The bimodal NW Etendeka province is located at the continental end of the Tristan plume trace in coastal Namibia. It comprises a high-Ti (Khumib type) and three low-Ti basalt (Tafelberg, Kuidas and Esmeralda types) suites, with, at stratigraphically higher level, interstratified high-Ti latites (three units) and quartz latites (five units), and one low-Ti quartz latite. Khumib basalts are enriched in high field strength elements and light rare earth elements relative to low-Ti types and exhibit trace element affinities with Tristan da Cunha lavas. The unradiogenic Pb-206/Pb-204 ratios of Khumib basalts are distinctive, most plotting to the left of the 132 Ma Geochron, together with elevated Pb-207/Pb-204 ratios, and Sr-Nd isotopic compositions plotting in the lower Nd-143/Nd-144 part of mantle array (EM1-like). The low-Ti basalts have less coherent trace element patterns and variable, radiogenic initial Sr (similar to0.707-0.717) and Pb isotope compositions, implying crustal contamination. Four samples, however, have less radiogenic Pb and Sr that we suggest approximate their uncontaminated source. All basalt types, but particularly the low-Ti types, contain samples with trace element characteristics (e.g. Nb/Nb-*) suggesting metasediment input, considered source-related. Radiogenic isotope compositions of these samples require long-term isolation of the source in the mantle and depletions (relative to unmodified sediment) in certain elements (e.g. Cs, Pb, U), which are possibly subduction-related. A geodynamic model is proposed in which the emerging Tristan plume entrained subducted material in the Transition Zone region, and further entrained asthenosphere during plume head expansion. Mixing calculations suggest that the main features of the Etendeka basalt types can be explained without sub-continental lithospheric mantle input. Crustal contamination is evident in most low-Ti basalts, but is distinct from the incorporation of a metasedimentary source component at mantle depths.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lavas belonging to the Grande Ronde Formation (GRB) constitute about 63% of the Columbia River Basalt Group (CRBG), a flood basalt province in the NW United States. A puzzling feature is the lack of phenocrysts (< 5%) in these chemically evolved lavas. Based mainly on this observation it has been hypothesized that GRB lavas were nearly primary melts generated by large-scale melting of eclogite. Another recent hypothesis holds that GRB magmas were extremely hydrous and rose rapidly from the mantle such that the dissolved water kept the magmas close to their liquidi. I present new textural and chemical evidence to show that GRB lavas were neither primary nor hydrous melts but were derived from other melts via efficient fractional crystallization and mixing in shallow intrusive systems. Texture and chemical features further suggest that the melt mixing process may have been exothermic, which forced variable melting of some of the existing phenocrysts. ^ Finally, reported here are the results of efforts to simulate the higher pressure histories of GRB using COMAGMAT and MELTS softwares. The intent was to evaluate (1) whether such melts could be derived from primary melts formed by partial melting of a peridotite source as an alternative to the eclogite model, or if bulk melting of eclogite is required; and (2) at what pressure such primary melts could have been in equilibrium with the mantle. I carried out both forward and inverse modeling. The best fit forward model indicates that most primitive parent melts related to GRB could have been multiply saturated at ∼1.5--2.0 GPa. I interpret this result to indicate that the parental melts last equilibrated with a peridotitic mantle at 1.5--2.0 GPa and such partial melts rose to ∼0.2 GPa where they underwent efficient mixing and fractionation before erupting. These models suggest that the source rock was not eclogitic but a fertile spinel lherzolite, and that the melts had ∼0.5% water. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A comprehensive study of 102 samples of grain size fractions 0.010-0.005; 0.005-0.001, and <0.001 mm showns that clay mineral compositions from bottom sediments of the Faroe-Iceland Threshold and Faroe-Shetland Trench are different. In the first case it is essentially smectite-chlorite, in the second - mainly hydromicaceous. The difference in composition of clay minerals is due to influence of different source areas of terrigenous material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Basalts from DSDP Sites 248, 249, 250 and 251 in the southwestern Indian Ocean formed in a complex tectonic region affected by the separation of Africa and South America. The different ages and variable geochemical features of these DSDP basalts probably reflect this tectonic complexity. For example, Site 251 on the flanks of the Southwest Indian Ridge is represented by normal MORB which probably originated at the Southwest Indian Ridge. Site 250 in the Mozambique Basin includes an older incompatible- element enriched unit which may represent basalt associated with the Prince Edward Fracture Zone; the upper unit is normal MORB. Basalts at Site 248 also in the Mozambique Basin are geochemically very unlike MORB and have strong continental affinities; they are also comparable in age to some of the continental Karroo basalts. They appear to be related to a subcontinental mantle source or to contamination by continental basement associated with the tectonic elevation of the Mozambique Ridge. Basalts from Site 249 on the Mozambique Ridge are relatively weathered but appear to be normal MORB. Their age, location, and composition are consistent with their origin at an early Cretaceous rift which has been postulated to have separated the Falkland Plateau from the Mozambique Ridge.