960 resultados para basal metabolic rate


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To compare measurements of sleeping metabolic rate (SMR) in infancy with predicted basal metabolic rate (BMR) estimated by the equations of Schofield. Methods: Some 104 serial measurements of SMR by indirect calorimetry were performed in 43 healthy infants at 1.5, 3, 6, 9 and 12 months of age. Predicted BMR was calculated using the weight only (BMR-wo) and weight and height (BMR-wh) equations of Schofield for 0-3-y-olds. Measured SMR values were compared with both predictive values by means of the Bland-Altman statistical test. Results: The mean measured SMR was 1.48 MJ/day. The mean predicted BMR values were 1.66 and 1.47 MJ/day for the weight only and weight and height equations, respectively. The Bland-Altman analysis showed that BMR-wo equation on average overestimated SMR by 0.18 MJ/day (11%) and the BMR-wh equation underestimated SMR by 0.01 MJ/day (1%). However the 95% limits of agreement were wide: -0.64 to + 0.28 MJ/day (28%) for the former equation and -0.39 to + 0.41 MJ/day (27%) for the latter equation. Moreover there was a significant correlation between the mean of the measured and predicted metabolic rate and the difference between them. Conclusions: The wide variation seen in the difference between measured and predicted metabolic rate and the bias probably with age indicates there is a need to measure actual metabolic rate for individual clinical care in this age group.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examined the effects of cage size and testosterone (T) levels on basal and peak metabolic rates (BMR and PMR, respectively) and on pectoral and leg muscle masses of male house sparrows (Passer domesticus). Birds were housed either in small birdcages or in flight aviaries for at least 2 weeks prior to the initial metabolic evaluations. They were then implanted with either empty or T-filled silastic capsules and remeasured 5–6 weeks later. Birds treated with single T implants achieved breeding levels (4–6 ng/mL) and one group given double implants reached 10 ng/mL. There was no effect of T on BMR or PMR in any group studied, but there was an effect of caging. Caged birds showed significant reductions in PMR over the course of captivity, whereas PMR in aviary-housed birds were indistinguishable from their free-living counterparts. Testosterone treatment significantly increased leg muscle mass in caged birds, but had no effect on muscle mass in aviary-housed sparrows. We conclude that testosterone has no direct effect on sparrow metabolic rate or muscle mass, but may interact with cage conditions to produce indirect changes to these variables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Canids form the most widely distributed family within the order Carnivora, with members present in a multitude of different environments from cold arctic to hot, dry deserts. We reviewed the literature and compared 24 data sets available on the basal metabolic rate (BMR) of 12 canid species, accounting for body mass and climate, to examine inter- and intraspecific variations in mass-adjusted BMR between 2 extreme climates (arctic and hot desert). Using both conventional and phylogenetically independent analysis of covariance, we found that canids from the arctic climate zone had significantly higher mass-adjusted BMR than species from hot deserts. Canids not associated with either arctic or desert climates had an intermediate and more variable mass-adjusted BMR. The climate effect also was significant at the intraspecific level in species for which we had data in 2 different climates. Arctic and desert climates represent contrasting combinations of ambient temperatures and water accessibility that require opposite physiological adaptations in terms of metabolism. The fact that BMR varies within species when individuals are subjected to different climate regimes further suggests that climate is an important determinant of BMR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We address the question of whether physiological flexibility in relation to climate is a general feature of the metabolic properties of birds. We tested this hypothesis in hand-raised Garden Warblers (Sylvia borin), long-distance migrants, which normally do not experience great temperature differences between summer and winter. We maintained two groups of birds under cold and warm conditions for 5 months, during which their body mass and food intake were monitored. When relatedness (siblings vs. non-siblings) of the experimental birds was taken into account, body mass in cold-acclimated birds was higher than in warm-acclimated birds. BMR, measured at the end of the 5-month temperature treatment, was also higher in the cold- than the warm-acclimated group. Migrant birds thus seem to be capable of the same metabolic cold-acclimation response as has been reported in resident birds. The data support the hypothesis that physiological flexibility is a basic trait of the metabolic properties of birds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. We studied the changes in body mass, metabolizable energy intake rate (ME) and basal metabolic rate (BMR) of a Thrush Nightingale, Luscinia luscinia, following repeated 12-h migratory flights in a wind tunnel. In total the bird flew for 176 h corresponding to 6300 km. This is the first study where the fuelling phase has been investigated in a bird migrating in captivity.

2. ME was very high, supporting earlier findings that migrating birds have among the highest intake rates known among homeotherms. ME was significantly higher the second day of fuelling, indicating a build-up of the capacity of the digestive tract during the first day of fuelling.

3. Further indications of an increase in size or activity level of metabolically active structures during fuelling come from the short-term variation in BMR, which increased over the 2-day fuelling period with more than 20%, and in almost direct proportion to body mass. However, mass-specific BMR decreased over the season.

4. The patterns of mass change, ME and BMR of our focal bird following two occasions of 12-h fasts were the same as after flights, indicating that fast and flight may involve similar physiological processes.

5. The relatively low ME the first day following a flight may be a contributing factor to the well-known pattern that migrating birds during stopover normally lose mass the first day of fuelling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several competing hypotheses attempt to explain how environmental conditions affect mass-independent basal metabolic rate (BMR) in mammals. One of the most inclusive and yet debatable hypotheses is the one that associates BMR with food habits, including habitat productivity. These effects have been widely investigated at the interspecific level under the assumption that for any given species all traits are fixed. Consequently, the variation among individuals is largely ignored. Intraspecific analysis of physiological traits has the potential to compensate for many of the pitfalls associated with interspecific analyses and, thus, to be a useful approach for evaluating hypotheses regarding metabolic adaptation. In this study, we investigated the effects of food quality, availability, and predictability on the BMR of the leaf-eared mouse Phyllotis darwini. BMR was measured on freshly caught animals from the field, since they experience natural seasonal variations in environmental factors ( and, hence, variations in habitat productivity) and diet quality. BMR was significantly correlated with the proportion of dietary plants and seeds. In addition, BMR was significantly correlated with monthly habitat productivity. Path analysis indicated that, in our study, habitat productivity was responsible for the observed changes in BMR, while diet per se had no effect on this variable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we review intraspecific studies of basal metabolic rate (BMR) that address the correlation between diet quality and BMR. The food-habit hypothesis stands as one of the most striking and often-mentioned interspecific patterns to emerge from studies of endothermic energetics. Our main emphasis is the explicit empirical comparison of predictions derived from interspecific studies with data gathered from within-species studies in order to explore the mechanisms and functional significance of the putative adaptive responses encapsulated by the food-habit hypothesis. We suggest that, in addition to concentrating on the relationship among diet quality, internal morphology, and BMR, new studies should also attempt to unravel alternative mechanisms that shape the interaction between diet and BMR, such as enzymatic plasticity, and the use of energy-saving mechanisms, such as torpor. Another avenue for future study is the measurement of the effects of diet quality on other components of the energy budget, such as maximum thermogenic and sustainable metabolic rates. It is possible that the effects of diet quality operate on such components rather than directly on BMR, which might then push or pull along changes in these traits. Results from intraspecific studies suggest that the factors responsible for the association between diet and BMR at an ecological timescale might not be the same as those that promoted the evolution of this correlation. Further analyses should consider how much of a role the proximate and ultimate processes have played in the evolution of BMR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aside from the pervasive effects of body mass, much controversy exists as to what factors account for interspecific variation in basal metabolic rates (BMR) of mammals; however, both diet and phylogeny have been strongly implicated. We examined variation in BMR within the New World bat family Phyllostomidae, which shows the largest diversity of food habits among mammalian families, including frugivorous, nectarivorous, insectivorous, carnivorous and blood-eating species. For 27 species, diet was taken from the literature and BMR was either measured on animals captured in Brazil or extracted from the literature. Conventional (nonphylogenetic) analysis of covariance (ANCOVA), with body mass as the covariate, was first used to test the effects of diet on BMR. In this analysis, which assumes that all species evolved simultaneously from a single ancestor (i.e., a star phylogeny), diet exerted a strong effect on mass-in-dependent BMR: nectarivorous bats showed higher mass-independent BMR than other bats feeding on fruits, insects or blood. In phylogenetic ANCOVAs via Monte Carlo computer simulation, which assume that species are part of a branching hierarchical phylogeny, no statistically significant effect of diet on BMR was observed. Hence, results of the nonphylogenetic analysis were misleading because the critical values for testing the effect of diet were underestimated. However, in this sample of bats, diet is perfectly confounded with phylogeny, because the four dietary categories represent four separate subclades, which greatly reduces statistical power to detect a diet (= subclade) effect. But even if diet did appear to exert an influence on BMR in this sample of bats, it would not be logically possible to separate this effect from the possibility that the dietary categories differ for some other reason (i.e., another synapomorphy of one or more of the subclades). Examples such as this highlight the importance of considering phylogenetic relationships when designing new comparative studies, as well as when analyzing existing data sets. We also discuss some possible reasons why BMR may not coadapt with diet. © by Urban & Fischer Verlag.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate the currently available predictive equations for basal metabolic rate (BMR) in subjects with obesity class II and III, and to assess the contribution by the components of a two-compartment model of body composition, namely the lean body mass (LBM) and the fat mass (FM) to the prediction. A second objective was to examine the reliability of the Harris Benedict equation in obese subjects, especially with a weight > or = 120 kg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mahogany (mg) locus originally was identified as a recessive suppressor of agouti, a locus encoding a skin peptide that modifies coat color by antagonizing the melanocyte-stimulating hormone receptor or MC1-R. Certain dominant alleles of agouti cause an obesity syndrome when ectopic expression of the peptide aberrantly antagonizes the MC4-R, a related melanocyte-stimulating hormone receptor expressed in hypothalamic circuitry and involved in the regulation of feeding behavior and metabolism. Recent work has demonstrated that mg, when homozygous, blocks not only the ability of agouti to induce a yellow coat color when expressed in the skin of the lethal yellow mouse (AY), but also the obesity resulting from ectopic expression of agouti in the brain. Detailed analysis of mg/mg AY/a animals, presented here, demonstrates that mg/mg blocks the obesity, hyperinsulinemia, and increased linear growth induced by ectopic expression of the agouti peptide. Remarkably, however, mg/mg did not reduce hyperphagia in the AY/a mouse. Furthermore, mg/mg induced hyperphagia and an increase in basal metabolic rate in the C57BL/6J mouse in the absence of AY. Consequently, although mahogany is broadly required for agouti peptide action, it also appears to be involved in the control of metabolic rate and feeding behavior independent of its suppression of agouti.