984 resultados para barium bismuth tantalate


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Schottky barrier heights of various metals on the high permitivity oxides tantalum pentoxide, barium strontium titanate, lead zirconate titanate, and strontium bismuth tantalate have been calculated as a function of the metal work function. It is found that these oxides have a dimensionless Schottky barrier pinning factor S of 0.28-0.4 and not close to 1 because S is controlled by Ti-O-type bonds not Sr-O-type bonds, as assumed in earlier work. The band offsets on silicon are asymmetric with a much smaller offset at the conduction band, so that Ta2O5 and barium strontium titanate are relatively poor barriers to electrons on Si. © 1999 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schottky barrier heights of various metals on tantalum pentoxide, barium strontium titanate, lead zirconate-titanate and strontium bismuth tantalate have been calculated as a function of metal work function. These oxides have a dimensionless Schottky barrier pinning factor, S, of 0.28 - 0.4 and not close to 1, because S is controlled by the Ti-O type bonds not Sr-O type bonds, as assumed previously. Band offsets on silicon are asymmetric with much smaller offset at the conduction band, so that Ta2O5 and barium strontium titanate (BST) are relatively poor barriers to electrons on Si.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Barium lanthanum bismuth titanate (Ba1−(3/2)xLaxBi4Ti4O15, x = 0–0.4) ceramics were fabricated using the powders synthesized via the solid-state reaction route. X-ray powder diffraction analysis confirmed the above compositions to be monophasic and belonged to the m = 4 member of the Aurivillius family of oxides. The effect of the partial presence of La3+ on Ba2+ sites on the microstructure, dielectric and relaxor behaviour of BaBi4Ti4O15 (BBT) ceramics was investigated. For the compositions pertaining to x ≤ 0.1, the dielectric constant at both room temperature and in the vicinity of the temperature of the dielectric maximum (Tm) of the parent phase (BBT) increased significantly with an increase in x while Tm remained almost constant. Tm shifted towards lower temperatures accompanied by a decrease in the magnitude of the dielectric maximum (εm) with an increase in the lanthanum content (0.1 < x ≤ 0.4). The dielectric relaxation was modelled using the Vogel–Fulcher relation and a decrease in the activation energy for frequency dispersion with increasing x was observed. The frequency dispersion of Tm was found to decrease with an increase in lanthanum doping, and for compositions corresponding to x ≥ 0.3, Tm was frequency independent. Well-developed P(polarization)–E(electric field) hysteresis loops were observed at 150 °C for all the samples and the remanent polarization (2Pr) was improved from 6.3 µC cm−2 for pure BBT to 13.4 µC cm−2 for Ba0.7La0.2Bi4Ti4O15 ceramics. Dc conductivities and associated activation energies were evaluated using impedance spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glass nanocomposites in the system (100 - x)Li2B4O7-xSrBi(2)Ta(2)O(9) (0 less than or equal to x less than or equal to 22.5, in molar ratio) were fabricated via a melt quenching technique followed by controlled heat-treatment. The as-quenched samples were confirmed to be glassy and amorphous by differential thermal analysis (DTA) and X-ray powder diffraction (XRD) techniques, respectively. The phase formation and crystallite size of the heat-treated samples (glass nanocomposites) were monitored by XRD and transmission electron microscopy (TEM). The relative permittivities (epsilon(tau)') of the glass nanocomposites for different compositions were found to lie in between that of the parent host glass (Li2B4O7) and strontium bismuth tantalate (SBT) ceramic in the frequency range 100 Hz-40 MHz at 300 K, whereas the dielectric loss (D) of the glass nanocomposite was less than that of both the parent phases. Among the various dielectric models employed to predict the effective relative permittivity of the glass nanocomposite, the one obtained using the Maxwell's model was in good agreement with the experimentally observed value. Impedance analysis was employed to rationalize the electrical behavior of the glasses and glass nanocomposites. The pyroelectric response of the glasses and glass nanocomposites was monitored as a function of temperature and the pyroelectric coefficient for glass and glass nanocomposite (x = 20) at 300 K were 27 muC m(-2) K-1 and 53 muC m(-2) K-1, respectively. The ferroelectric behavior of these glass nanocomposites was established by P vs. E hysteresis loop studies. The remnant polarization (P-r) of the glass nanocomposite increases with increase in SBT content. The coercive field (E-c) and P-r for the glass nanocomposite (x = 20) were 727 V cm(-1) and 0.527 muC cm(-2), respectively. The optical transmission properties of these glass nanocomposites were found to be composition dependent. The refractive index (n = 1.722), optical polarizability (am = 1.266 6 10 23 cm 3) and third-order nonlinear optical susceptibility (x(3) = 3.046 6 10(-21) cm(3)) of the glass nanocomposite (x = 15) were larger than those of the as-quenched glass. Second harmonic generation (SHG) was observed in transparent glass nanocomposites and the d(eff) for the glass nanocomposite (x = 20) was found to be 0.373 pm V-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we investigated the oxygen permeation properties of barium bismuth iron oxide within the family of [Ba2−3xBi3x−1][Fe2xBi1−2x]O2+3x/2 for x = 0.17–0.60. The structure changed progressively from cubic to tetragonal and then to hexagonal as function of x in accordance with the different relative amounts of bismuth on A-site and B-site of ABO3−δ perovskite lattices. We found that the oxygen flux and electrical conductivity correlated strongly, and it was prevalent for the cubic structure (x = 0.33–0.40) which conferred the highest oxygen flux of 0.59 ml min−1 cm−2 at 950 °C for a disk membrane x = 0.33 with a thickness of 1.2 mm. By reducing the thickness of the disk membrane to 0.8 mm, the oxygen flux increased to 0.77 ml min−1 cm−2, suggesting both surface kinetics and ion diffusion controlled oxygen flux, though the former was more prominent at higher temperatures. For disk membranes x = 0.45–0.60, the perovskite structure changed to tetragonal and hexagonal, and the oxygen flux was insignificant below 900 °C, clearly indicating electron conduction properties only. However, for two compositions with relatively high bismuth content, e.g. x = 0.55 and 0.60, there was a sudden and significant rise of oxygen permeability above 900 °C, by more than one order of magnitude. These materials changed conduction behavior from metallic to semiconductor at around 900 °C. These results suggest the advent of mixed ionic electronic conducting properties caused by the structure transition as bismuth ions changed their valence states to compensate for the oxygen vacancies formed within the perovskite lattices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, the effect of bismuth content on the crystal structure, morphology and electric properties of barium-bismuth-tantalate (BBT) ceramics was explored with the aid of X-ray diffraction (XRD), scanning electron microcopy (SEM), dielectric properties and ferroelectric hysteresis loops. BaBi2Ta2O9 (BBT) ceramics have been successfully prepared by the solid-state reaction. The BBT phase was crystallized at 900 degreesC for 2 h. The excess of bismuth controls the grain size, affecting the density of the material. Measurements of dieletric constant and dieletric losses confirm that the material is a ferroeletric with a Curie temperature around 77 degreesC. The dieletric constant measured at room temperature was 400, with a dielectric loss of 0.03. Both the phase-transition behaviour and ferroelectric properties, such as spontaneous polarization (P-s), showed a dependence on Bi content. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bi4Ti4O15 [BBT], a member of Aurivillius bismuth-based layer-structure perovskites, was prepared from stoichiometric amounts of BaTiO3 [BT] and Bi4Ti3O12 [BIT] obtained via mechanochemical synthesis. Mechanochemical synthesis was performed in air atmosphere in a planetary ball mill. BBT ceramics were sintered at 1100C for 4 h without pre-calcination step within heating rate 10C/min. The formation of phase and crystal structure of BT, BIT and BBT were approved using X-ray analysis. The morphology of obtained powders and microstructure were exhamined using scanning electron microscopy. The electrical properties of sintered samples were carried out.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single-phase Ba(Cd1/3Ta2/3)O-3 powder was produced using conventional solid state reaction methods. Ba(Cd1/3Ta2/3)O-3 ceramics with 2 wt % ZnO as sintering additive sintered at 1550 degreesC exhibited a dielectric constant of similar to32 and loss tangent of 5x10(-5) at 2 GHz. X-ray diffraction and thermogravimetric measurements were used to characterize the structural and thermodynamic properties of the material. Ab initio electronic structure calculations were used to give insight into the unusual properties of Ba(Cd1/3Ta2/3)O-3, as well as a similar and more widely used material Ba(Zn1/3Ta2/3)O-3. While both compounds have a hexagonal Bravais lattice, the P321 space group of Ba(Cd1/3Ta2/3)O-3 is reduced from P (3) under bar m1 of Ba(Zn1/3Ta2/3)O-3 as a result of a distortion of oxygen away from the symmetric position between the Ta and Cd ions. Both of the compounds have a conduction band minimum and valence band maximum composed of mostly weakly itinerant Ta 5d and Zn 3d/Cd 4d levels, respectively. The covalent nature of the directional d-electron bonding in these high-Z oxides plays an important role in producing a more rigid lattice with higher melting points and enhanced phonon energies, and is suggested to play an important role in producing materials with a high dielectric constant and low microwave loss. (C) 2005 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ferroelectric layefed-perovskite BaBi2Ta2O9 (BBT) has been prepared successfully by solid-state reaction. The influence of pressure and temperature/time annealing regime on the BBT phase formation was analyzed. The powders were characterized by thermal analysis and Xray diffraction and the sintered pellets by scanning electron microscopy. The crystalline BBT phase, free of secondary phases was obtained at 950 degreesC for 2 h. For an applied field strength of 380 kV/cm, a remnant polarization of 7.6 muC/cm(2) and an electric coercive field of 45.7 kV/cm were obtained. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Experimental studies are reported concerning the importance of interfacial capacitance (including electrode screening, space-charge layers, and/or chemically discrete dead layers). on domain switching behaviour in thin films of ferroelectric lead zirconate-titanate (PZT), strontium bismuth tantalate (SBT), and barium strontium titanate (BST). Emphasis is placed upon studies at applied field values very near the coercive field E, asymmetry in fatigue for positive and negative polarity coercive fields, and in the case of BST, of the coexistence of ferroelectric and paraelectric phases Studies of dielectric loss show important correlations between tan 6 and fatigue (polarization decrease) as a function of bipolar switching cycles N. This is a priori not obvious, since the former is a linear response and the latter, a nonlinear response. Modelling of enlarged interfacial,space-charge layers in PZT films and chemically distinct dead (paraelectric) layers in BST films shows contradictory tendencies of coercive-voltage changes with the growth of passive layers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have conducted a broad survey of switching behavior in thin films of a range of ferroelectric materials, including some materials that are not typically considered for FeRAM applications, and are hence less studied. The materials studied include: strontium bismuth tantalate (SBT), barium strontium titanate (BST), lead zicronate titanate (PZT), and potassium nitrate (KNO3). Switching in ferroelectric thin films is typically considered to occur by domain nucleation and growth. We discuss two models of frequency dependence of coercive field, the Ishisbashi-Orihara theory where the limiting step is domain growth and the model of Du and Chen where the limiting step is nucleation. While both models fit the data fairly well the temperature dependence of our results on PZT and BST suggest that the nucleation model of Du and Chen is more appropriate for the experimental results that we have obtained.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report electron microscopic evidence of transmission from a pet dog to a 12-year-girl of Gastrospirillum hominis which caused gastric disease in both that was eradicable with treatment. © 1994.