929 resultados para band ratio
The combined use of reflectance, emissivity and elevation Aster/Terra data for tropical soil studies
Resumo:
Reflectance, emissivity and elevation data of the sensor ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer)/Terra were used to characterize soil composition variations according to the toposequence position. Normalized data of SWIR (shortwave infrared) reflectance and TIR (thermal infrared) emissivity, coupled to a soil-fraction image from a spectral mixture model, were evaluated to separate bare soils from nonphotosynthetic vegetation. Regression relationships of some soil properties with reflectance and emissivity data were then applied on the exposed soil pixels. The resulting estimated values were plotted on the ASTER-derived digital elevation model. Results showed that the SWIR bands 5 and 6 and the TIR bands 10 and 14 measured the clay mineral absorption band and the quartz emissivity feature, respectively. These bands improved also the discrimination between nonphotosynthetic vegetation and soils. Despite the differences in pixel size and field sampling size, some soil properties were correlated with reflectance (R² of 0.65 for Al2O3 in band 6; 0.61 for Fe2O3 in band 3) and emissivity (R² of 0.65 for total sand fraction in the 10/14 band ratio). The combined use of reflectance, emissivity and elevation data revealed variations in soil composition with topography in specific parts of the landscape. From higher to lower slope positions, a general decrease in Al2O3 and increase in total sand fraction was observed, due to the prevalence of Rhodic Acrustox at the top and its gradual transition to Typic Acrustox at the bottom.
Resumo:
Soil properties have an enormous impact on economic and environmental aspects of agricultural production. Quantitative relationships between soil properties and the factors that influence their variability are the basis of digital soil mapping. The predictive models of soil properties evaluated in this work are statistical (multiple linear regression-MLR) and geostatistical (ordinary kriging and co-kriging). The study was conducted in the municipality of Bom Jardim, RJ, using a soil database with 208 sampling points. Predictive models were evaluated for sand, silt and clay fractions, pH in water and organic carbon at six depths according to the specifications of the consortium of digital soil mapping at the global level (GlobalSoilMap). Continuous covariates and categorical predictors were used and their contributions to the model assessed. Only the environmental covariates elevation, aspect, stream power index (SPI), soil wetness index (SWI), normalized difference vegetation index (NDVI), and b3/b2 band ratio were significantly correlated with soil properties. The predictive models had a mean coefficient of determination of 0.21. Best results were obtained with the geostatistical predictive models, where the highest coefficient of determination 0.43 was associated with sand properties between 60 to 100 cm deep. The use of a sparse data set of soil properties for digital mapping can explain only part of the spatial variation of these properties. The results may be related to the sampling density and the quantity and quality of the environmental covariates and predictive models used.
Resumo:
The North Paraíba River Estuary, located in the eastern portion of the Paraíba State, Northeast Brazil, on coordinates 34º50 00 -34º57 30 S and 6º55 00 -7º7 30 W, constitutes a fluvio-marine plain formed by the North Paraíba River and its tributaries Sanhauá, Paroeira, Mandacaru, Tiriri, Tambiá, Ribeira and Guia. This estuary comprises an area of about 260 km2. Increasing human demands on the estuary area and inadequate environment managing have generated conflicts. The present work main purpose is to evaluate the geodynamic evolution of the North Paraíba River Estuary in the period from 1969 to 2001, using digital image processing techniques, thematic digital cartography and multitemporal data integration, combined to geological-geophysical field surveys. The SUDENE cartographic database, converted to digital format were, used to obtain occupation and topographic maps from 1969 and to generate a Digital Elevation Model (DEM). Digital Landsat 7 ETM+ and Spot HRVIR-PAN satellite images interpretation allowed the environmental characterization of the estuary. The most important digital processing results were achieved color composites RGB 5-4-3, 5-3-1, 5-2-NDWI and band ratio 7/4-5/3-4/2, 5/7-3/1-5/4). In addition the fusion image technique RGBI was used by the inclusion of the Spot HRVRI and Landsat 7 ETM+ panchromatic band on I layer with RGB triplets 5-4-3, 5-3-1 and 5/7-3/1-5/4. The DEM and digital images integration allowed the identification of seven geomorphological units: coastal tableland, flowing tray, tide plain, fluvial terrace, submerged dune, beach plain and beach). Both Side Scan Sonar and Echosound were used to analyse underwater surface and bedforms of the estuarine channel, sand predominance (fine to very fine) and 2D dune features 5 m wide and 0.5 m height. This investigation characterized the estuary as an environment dominated by regimen of average flow. The channel depth varies between 1 m and 11 m, being this last quota reached in the area of Porto de Cabedelo. The chanel estuary is relatively shallow, with erosion evidences mainly on its superior portion, attested by sand banks exposed during the low tide. Multitemporal digital maps from 1969 and 2001 integration were obtained through geoprocessing techniques, resulting the geodynamic evolution of the estuary based on landuse, DEM geomorphology and bathymetric maps
Resumo:
Pós-graduação em Ciências Cartográficas - FCT
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The need to obtain ocean color essential climate variables (OC-ECVs) using hyperspectral technology has gained increased interest in recent years. Assessing ocean color on a large scale in high latitude environments using satellite remote sensing is constrained by polar environmental conditions. Nevertheless, on a small scale we can assess ocean color using above-water and in-water remote sensing. Unfortunately, above-water remote sensing can only determine apparent optical properties leaving the sea surface and is susceptible to near surface environmental conditions for example sky and sunglint. Consequently, we have to rely on accurate in-water remote sensing as it can provide both synoptic inherent and apparent optical properties of seawater. We use normalized water leaving radiance LWN or the equivalent remote sensing reflectance RRS from 27 stations to compare the differences in above-water and in-water OC-ECVs. Analysis of above-water and in-water RRS spectra provided very good match-ups (R2 > 0.97, MSE<1.8*10**-7) for all stations. The unbiased percent differences (UPD) between above-water and in-water approaches were determined at common OC-ECVs spectral bands (410, 440, 490, 510 and 555) nm and the classic band ratio (490/555) nm. The spectral average UPD ranged (5 - 110) % and band ratio UPD ranged (0 - 12) %, the latter showing that the 5% uncertainty threshold for ocean color radiometric products is attainable. UPD analysis of these stations West of Greenland, Labrador Sea, Denmark Strait and West of Iceland also suggests that the differences observed are likely a result of environmental and instrumental perturbations.
Resumo:
SPOT simulation imagery was acquired for a test site in the Forest of Dean in Gloucestershire, U.K. This data was qualitatively and quantitatively evaluated for its potential application in forest resource mapping and management. A variety of techniques are described for enhancing the image with the aim of providing species level discrimination within the forest. Visual interpretation of the imagery was more successful than automated classification. The heterogeneity within the forest classes, and in particular between the forest and urban class, resulted in poor discrimination using traditional `per-pixel' automated methods of classification. Different means of assessing classification accuracy are proposed. Two techniques for measuring textural variation were investigated in an attempt to improve classification accuracy. The first of these, a sequential segmentation method, was found to be beneficial. The second, a parallel segmentation method, resulted in little improvement though this may be related to a combination of resolution in size of the texture extraction area. The effect on classification accuracy of combining the SPOT simulation imagery with other data types is investigated. A grid cell encoding technique was selected as most appropriate for storing digitised topographic (elevation, slope) and ground truth data. Topographic data were shown to improve species-level classification, though with sixteen classes overall accuracies were consistently below 50%. Neither sub-division into age groups or the incorporation of principal components and a band ratio significantly improved classification accuracy. It is concluded that SPOT imagery will not permit species level classification within forested areas as diverse as the Forest of Dean. The imagery will be most useful as part of a multi-stage sampling scheme. The use of texture analysis is highly recommended for extracting maximum information content from the data. Incorporation of the imagery into a GIS will both aid discrimination and provide a useful management tool.
Resumo:
The enhanced radar return associated with melting snow, ‘the bright band’, can lead to large overestimates of rain rates. Most correction schemes rely on fitting the radar observations to a vertical profile of reflectivity (VPR) which includes the bright band enhancement. Observations show that the VPR is very variable in space and time; large enhancements occur for melting snow, but none for the melting graupel in embedded convection. Applying a bright band VPR correction to a region of embedded convection will lead to a severe underestimate of rainfall. We revive an earlier suggestion that high values of the linear depolarisation ratio (LDR) are an excellent means of detecting when bright band contamination is occurring and that the value of LDR may be used to correct the value of Z in the bright band.
Resumo:
BACKGROUND & AIMS: There is controversy over whether coagulation status predicts bleeding caused by ulceration after esophageal varices band ligation (EVL). METHODS: EVL was performed for primary (n = 45) or secondary (n = 105) prophylaxis in 150 patients with cirrhosis (Child A, n = 74, 49%; Child B, n = 42, 28%; Child C, n = 34, 23%). International normalized ratio (INR) and platelet counts were assessed in all. In 92 patients, levels of factor V, fibrinogen, D-dimer, protein C and protein S, von Willebrand factor, and thromboelastography (TEG) were assessed. Platelet count < 50 x 10(3)/mm(3) and INR > 1.5 were considered high-risk cutoff for bleeding. Conversely, platelet count >= 50 x 10(3)/mm(3) with INR <= 1.5 were safe cutoffs. RESULTS: Overall, 11 patients (7.3%) had post-EVL ulcer bleeding. Bleeding occurred in S patients with Child A/B (4.3%) and 6 patients with Child C (17%) (P = .0174 for Child A/B versus Child C). Eight patients with bleeding were among the 110 below the cutoff for INR and platelet count, whereas only 3 of the patients with bleeding were among the 40 patients with purported high-risk values (P = 1.0). Among the 92 patients with expanded coagulation tests, bleeding occurred in S. There was no difference in any of the coagulation parameters, including overall TEG patterns, between patients who did and did nor bleed. CONCLUSIONS: Post-EVL ulcer bleeding was associated with Child C status but not with conventional or expanded coagulation indices in cirrhotic patients without renal failure or infection undergoing elective EVL. These results call into question the common use of prophylactic procoagulants in the elective setting.
Resumo:
Despite recent advances, early diagnosis of Alzheimer’s disease (AD) from electroencephalography (EEG) remains a difficult task. In this paper, we offer an added measure through which such early diagnoses can potentially be improved. One feature that has been used for discriminative classification is changes in EEG synchrony. So far, only the decrease of synchrony in the higher frequencies has been deeply analyzed. In this paper, we investigate the increase of synchrony found in narrow frequency ranges within the θ band. This particular increase of synchrony is used with the well-known decrease of synchrony in the band to enhance detectable differences between AD patients and healthy subjects. We propose a new synchrony ratio that maximizes the differences between two populations. The ratio is tested using two different data sets, one of them containing mild cognitive impairment patients and healthy subjects, and another one, containing mild AD patients and healthy subjects. The results presented in this paper show that classification rate is improved, and the statistical difference between AD patients and healthy subjects is increased using the proposed ratio.
Resumo:
Experimental studies on a compact dual frequency microstrip antenna are presented. This antenna configuration provides an area reduction of 40% compared to a standard rectangular antenna operating at the same frequency without much degradation of the gain. The antenna structure can be modified to achieve the desired ratio between the two resonant frequencies
Resumo:
A novel design of a computer electronically reconfigurable dual frequency dual polarized single feed hexagonal slot loaded microstrip antenna in L-band is introduced in this chapter. pin diodes are used to switch the operating frequencies considerably without much affecting the radiation characteristics and gain. the antenna can work with a frequency ratio varying in the wide range from 1.2 to 1.4. the proposed design has an added advantage of size reduction up to 72.21% and 46.84% for the two resonating frequencies compared to standard rectangular patches. the design also gives considerable bandwidth of up to 2.82% and 2.42 % for the operating frequencies.
Resumo:
Design of a compact dual frequency microstrip antenna is presented. The structure consists of a slotted circular patch with a dielectric superstrate. The superstrate,not only acts as a radome, but improves the bandwidth and lowers the resonant frequency also. The proposed design provides an overall size reduction of about 60% compared to an unslotted patch along with good efficiency,gain and bandwidth. The polarization planes at the two resonances are orthogonal and can be simultaneously excited using a coaxial feed. Parametric study of this configuration showed that the frequency ratio of the two resonances can be varied from 1.17 to 1.7 enabling its applications in the major wireless communication bands like AWS, DECT,PHS,Wi.Bro, ISM,and DMB. Design equations are also deduced for the proposed antenna and validated.
Resumo:
Comparison between observed and calculated infrared band contours has been made to determine the vibrational transition moment ratio |M10/M9| for the Coriolis interacting ν9 and ν10 perpendicular fundamentals of allene-h4. The ratio obtained is appreciably lower than that of a previous estimate and the result obtained by integrated band intensity measurements of Overend and Crawford. From the best estimate of the ratio, the dipole moment derivatives of the two bands are determined; the value for the weaker band ν9 is subject to a large uncertainty.
Resumo:
We propose a two band model for superconductivity. It turns out that the simplest nontrivial case considers solely interband scattering, and both bands can be modeled as symmetric (around the Fermi level) and flat, thus each band is completely characterized by its half-band width Wn (n=1,2). A useful dimensionless parameter is d, proportional to W2 - W1. The case delta = 0 retrieves the conventional BCS model. We probe the specific heat, the ratio gap over critical temperature, the thermodynamic critical field and tunneling conductance as functions of d and temperature (from zero to Tc). We compare our results with experimental results for MgB2 and good quantitative agreement is obtained, indicating the relevance of interband coupling. Work in progress also considers the inclusion of band hybridization and general interband as well as intra-band scattering mechanisms.