998 resultados para band bowing coefficient
Resumo:
The optical properties and the band lineup in GaNAs/GaAs single quantum wells (SQWs) grown by molecular beam epitaxy (MBE) using photoluminescence (PL) technique were investigated. It was found that the low-temperature PL is dominated by the intrinsic localized exciton emission. By fitting the experimental datawith a simple calculation, band offset of the GaN0.015As0.985/GaAs heterostructure was estimated. Moreover, DeltaE(c), the discontinuity of the conduction band was found to be a nonlinear function of the nitrogen composition (chi) and the average variation of DeltaE(c) is about 0. 110eV per % N, such smaller than that reported on the literature to (0.156 similar to 0.175 eV/N %). In addition, Qc has little change whtn N composition increares, with an experimential relation of QC approximate tox(0.25). The band bowing coefficient (b) was also studied in this paper. The measured band bowing coefficient shows a strong function of chi, giving an experimental support to the theoretic calculation of Wei Su-Huai and Zunger Alex (1996).
Resumo:
We have investigated GaNAs/GaAs single quantum wells (SQWs) grown by molecular beam epitaxy (MBE) using photoluminescence (PL), time-resolved PL (TRPL) and photovoltaic (PV) techniques. The low temperature PL is dominated by spatially direct transitions involving electrons confined in GaNAs well and holes localized in the same GaNAs layer. This assignment was supported by PL decay time measurements and absorption line-shape analysis derived from the PV measurements. By fitting the experimental data with a simple calculation, the band offset of the GaN0.015As0.985/GaAS heterostructure was estimated, and a type II band lineup in GaN0.015As0.985/GaAs QWs was suggested. Moreover, DeltaE(C), the discontinuity of conductor band, is found to be a nonlinear function of the nitrogen (N) composition (x), and the average variation of DeltaE(C) is about 0.110eV per %N, The measured band bowing coefficient shows a strong function of x, giving an experimental support to the theoretic calculation of Wei et al [Ref.2].
Resumo:
A new inline coupling topology for narrowband helical resonator filters is proposed that allows to introduce selectively located transmission zeros (TZs) in the stopband. We show that a pair of helical resonators arranged in an interdigital configuration can realize a large range of in-band coupling coefficient values and also selectively position a TZ in the stopband. The proposed technique dispenses the need for auxiliary elements, so that the size, complexity, power handling and insertion loss of the filter are not compromised. A second order prototype filter with dimensions of the order of 0.05 lambda, power handling capability up to 90 W, measured insertion loss of 0.18 dB and improved selectivity is presented.
Resumo:
SARAL/AltiKa GDR-T are analyzed to assess the quality of the significant wave height (SWH) measurements. SARAL along-track SWH plots reveal cases of erroneous data, more or less isolated, not detected by the quality flags. The anomalies are often correlated with strong attenuation of the Ka-band backscatter coefficient, sensitive to clouds and rain. A quality test based on the 1Hz standard deviation is proposed to detect such anomalies. From buoy comparison, it is shown that SARAL SWH is more accurate than Jason-2, particularly at low SWH, and globally does not require any correction. Results are better with open ocean than with coastal buoys. The scatter and the number of outliers are much larger for coastal buoys. SARAL is then compared with Jason-2 and Cryosat-2. The altimeter data are extracted from the global altimeter SWH Ifremer data base, including specific corrections to calibrate the various altimeters. The comparison confirms the high quality of SARAL SWH. The 1Hz standard deviation is much less than for Jason-2 and Cryosat-2, particularly at low SWH. Furthermore, results show that the corrections applied to Jason-2 and to Cryosat-2, in the data base, are efficient, improving the global agreement between the three altimeters.
Resumo:
Elastic constants, the bulk modulus, Young's modulus, band-gap bowing coefficients, spontaneous and piezoelectric polarizations, and piezoelectric coefficients of hexagonal AlxGa1-xN ternary alloys are calculated using first-principles methods. The fully relaxed structures and the structures subjected to homogeneous biaxial and uniaxial tension are investigated. We show that the biaxial tension in the plane perpendicular to the c axis and the uniaxial tension along the c axis all reduce the bulk modulus, whereas they reduce and enhance Young's modulus, respectively. We find that the biaxial and uniaxial tension can enhance the bowing coefficients. We also find that the biaxial tension can enhance the total polarization, while the uniaxial tension will suppress the total polarization. (C) 2008 American Institute of Physics.
Resumo:
Using a first-principles band-structure method and a special quasirandom structure (SQS) approach, we systematically calculate the band gap bowing parameters and p-type doping properties of (Zn, Mg, Be)O related random ternary and quaternary alloys. We show that the bowing parameters for ZnBeO and MgBeO alloys are large and dependent on composition. This is due to the size difference and chemical mismatch between Be and Zn(Mg) atoms. We also demonstrate that adding a small amount of Be into MgO reduces the band gap indicating that the bowing parameter is larger than the band-gap difference. We select an ideal N atom with lower p atomic energy level as dopant to perform p-type doping of ZnBeO and ZnMgBeO alloys. For N doped in ZnBeO alloy, we show that the acceptor transition energies become shallower as the number of the nearest neighbor Be atoms increases. This is thought to be because of the reduction of p-d repulsion. The N-O acceptor transition energies are deep in the ZnMgBeO quaternary alloy lattice-matched to GaN substrate due to the lower valence band maximum. These decrease slightly as there are more nearest neighbor Mg atoms surrounding the N dopant. The important natural valence band alignment between ZnO, MgO, BeO, ZnBeO, and ZnMgBeO quaternary alloy is also investigated.
Resumo:
The electronic structures of InSb1-xNx nanowires are investigated using the ten-band k center dot p method. It is found that nitrogen increases the Rashba coefficient of the nanowires dramatically. For thick nanowires, the Rashba coefficient may increase by more than 20 times. The semiconductor-metal transition occurs more easily in InSb1-xNx nanowires than in InSb nanowires. The electronic structure of InSb1-xNx nanowires is very different from that of the bulk material. For fixed x the bulk material is a semimetal, while the nanowires are metal-like. In InSb1-xNx bulk material and thick nanowires, an interesting decrease of electron effective mass is observed near k=0 which is induced by the nitrogen, but this phenomenon disappears in thin nanowires.
Resumo:
A novel PBG cell based on micromachining of Silicon using wet anisotropic etching has been considered. Since this is based on etching of the Silicon substrate, it is amenable to fabrication with standard Silicon processes and integration with millimeter wave circuits. We characterize this kind of PBG cell by full wave simulations using a time domain code. For the purpose of characterization, the scenario of a 50 ohm microstrip line placed on a Silicon substrate which is anisotropically etched to create patterns with sloping walls is considered. This is shown to produce the well known PBG response of stop bands in certain frequency bands. We look at the variation in the transmission coefficient (S-21) response as the number of periods, length based average fill factor and depth of micromachining are varied. One application of a low pass filter has been proposed and simulated results are given.
Resumo:
We present a simplified and quantitative analysis of the Seebeck coefficient in degenerate bulk and quantum well materials whose conduction band electrons obey Kane's non-parabolic energy dispersion relation. We use k.p formalism to include the effect of the overlap function due to the band non-parabolicity in the Seebeck coefficient. We also address the key issues and the conditions in which the Seebeck coefficient in quantum wells should exhibit oscillatory dependency with the film thickness under the acoustic phonon and ionized impurity scattering. The effect of screening length in degenerate bulk and quantum wells has also been generalized for the determination of ionization scattering. The well-known expressions of the Seebeck coefficient in non-degenerate wide band gap materials for both bulk and quantum wells has been obtained as a special case and this provides an indirect proof of our generalized theoretical analysis.
Resumo:
We report a dramatic change in effective three-photon absorption coefficient of amorphous Ge16As29Se55 thin films, when its optical band gap decreases by 10 meV with 532 nm light illumination. This large change provides valuable information on the higher excited states, which are otherwise inaccessible via normal optical absorption. The results also indicate that photodarkening in chalcogenide glasses can serve as an effective tool to tune the multiphoton absorption in a rather simple way. (C) 2011 American Institute of Physics.
Resumo:
Donor-doped n-(Ba,Pb)TiO3 polycrystalline ceramics exhibit distinctly two-step positive temperature coefficient of resistance (PTCR) characteristics when formulated with suitable combinations of B2O3 and Al2O3 as grain boundary modifiers by heterogeneous addition. B2O3 or Al2O3 when added singularly resulted in either steep or broad PTCR jumps respectively across the phase transition. The two-step PTCR is attributed to the activation of the acceptor states, created through B2O3 and Al2O3, for various temperature regimes above the Curie point (T-c). The changing pattern of trap states is evident from the presence of Ti4+-O--Al3+ type hole centres in the grain boundary layer regions, identified in the electron paramagnetic resonance (EPR) spectra. That charge redistribution occurs among the inter-band gap defect states on crossing the Curie temperature is substantiated by the temperature coefficient in the EPR results. Capacitance-voltage results clearly show that there is an increase in the density of trap states with the addition of B2O3 and Al2O3. The spread in energy values of these trap states is evident from the large change in barrier height (phi similar or equal to 0.25-0.6 eV) between 500 and 650 K.
Resumo:
We address a physics-based simplified analytical formulation of the diffusive electrical resistance ( (Omega)) and Seebeck coefficient () in a PbTe nanowire dominated by acoustic phonon scattering under the presence of a low static longitudinal electric field. The use of a second-order nonparabolic electron energy band structure involving a geometry-dependent band gap has been selected in principle to demonstrate that the electron mean free path (MFP) in such a system can reach as low as about 8 nm at room temperature for a 10-nm-wide PbTe nanowire. This is followed by the formulation of the carrier back-scattering coefficient for determination of (Omega) and as functions of wire dimensions, temperature, and the field, respectively. The present analytical formulation agrees well with the available experimental data and may find extensive use in determination of various electrothermal transport phenomena in PbTe-based one-dimensional electron devices.
Resumo:
We report a facile route to synthesize high quality earth abundant absorber Cu3BiS3, tailoring the band gap with the morphology manipulation and thereby analyzed the secondary phases and their role in the transport property. The sample at 48 hours reaction profile showed good semiconducting behavior, whereas other samples showed mostly a metallic behavior. Band gap was varied from 1.86 eV to 1.42 eV upon controling the reaction profile from 8 hours to 48 hours. The activation energy was calculated to be 0.102 eV. The temperature coefficient of resistance (TCR) was found to be 0.03432 K-1 at 185 K. The IR photodectection properties in terms of photoresponse have been demonstrated. The high internal gain (G = 3.7 x 10(4)), responsivity (R = 3.2 x 10(4) A W-1) for 50 mW cm(-2) at 5 V make Cu3BiS3, an alternative potential absorber in meliorating the technological applications as near IR photodetectors.
Resumo:
III-V pentenary semiconductor AlGaInPAs with a direct band gap of up to 2.0 eV has been grown successfully on GaAs substrates by liquid phase epitaxy;(LPE). With the introduction of the energy bowing parameters of quaternaries, the theoretical calculations agree well with the measured PL peak energy data from pentenary samples.