947 resultados para bacterial proliferation
Resumo:
The penis and prepuce of the stallion have a high bacterial load on its surface, forming a natural microbial flora that contaminates the semen during ejaculation. Bacterial growth in semen may cause a decline on sperm quality, viability, and fertility and predisposes the occurrence of endometritis in inseminated mares. Thus, the aim of this study was to evaluate the effect of penile wash before semen collection, the addition of different commercial skim milk-based extenders containing antibiotics (BotuSemen and INRA96), and the removal of seminal plasma by filtration on the quality, viability, and bacterial proliferation on fresh and cooled stallion semen. Animals that were never submitted to penile wash before semen collection tended to have lower bacterial contamination in the ejaculate. Semen samples extended in BotuSemen showed superiority in total motility, progressive motility, average path velocity, and rapid sperm and lower bacterial contamination in relation to semen samples extended in INRA96 after 24 hours of cooling. No difference was found in these parameters between the storage temperatures (5 degrees C and 15 degrees C). Furthermore, the removal of seminal plasma by filtration reduced the bacterial load in semen after cooling. In conclusion, the penile wash before semen collection tended to reduce the bacterial growth in fresh semen. The use of a semen extender with appropriate antibiotics and removal of seminal plasma by filtration were effective in reducing the bacterial contamination and preserved the quality of cooled stallion semen. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
Postharvest treatments with nano-silver (NS) alleviate bacteria-related stem blockage of some cut flowers to extend their longevity. Gladiolus (Gladiolus hybridus) is a commercially important cut flower species. For the first time, the effects of NS pulses on cut gladiolus ‘Eerde’ spikes were investigated towards reducing bacterial colonization of and biofilm formation on their stems. As compared with a deionized water (DIW) control, pulse treatments with NS at 10, 25 and 50 mg L−1 for 24 h significantly (P ≤ 0.05) prolonged the vase life of cut gladiolus spikes moved into vases containing DIW. The NS treatments enhanced floret ‘opening rate’ and ‘daily ornamental value’. Although there were no significant differences among NS treatments, a 25 mg L−1 NS pulse treatment tended to give the longest vase life and the best ‘display quality’. All NS pulse treatments significantly improved water uptake by and reduced water loss from flowering spikes, thereby delaying the loss of water balance and maintaining relative fresh weight. Fifty (50) mg L−1 NS pulse-treated cut gladiolus spikes tended to exhibit the most water uptake and highest water balance over the vase period. However, there was no significant difference between 25 and 50 mg L−1 NS pulse treatments. Observations of stem-end bacterial proliferation during the vase period on cut gladiolus spikes either with or without NS pulse treatments were performed by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). As compared to the control treatment, they revealed that the 25 mg L−1 NS pulse treatment effectively inhibited bacterial colonization and biofilm formation on the stem-end cut surface and in the xylem vessels, respectively. In vitro culture of the bacterial microflora and analysis of biofilm architecture using CLSM revealed that NS treatment restricted bacterial biofilm formation. After static culture for 24 h at 35 °C with 25 mg L−1 NS in the medium, no biofilm form or structure was evident. Rather, only limited bacterial cell number and scanty extracellular polysaccharide (EPS) material were observed. In contrast, mature bacterial biofilm architecture comprised of abundant bacteria interwoven with EPS formed in the absence of NS.
Resumo:
Major advances in the development and use of antimicrobial textiles to control bacterial proliferation on wound beds continue. However, wound dressings are, in general, not included in standardized regimens for measuring and monitoring their antimicrobial effectiveness. This work adapts these methods to assess the antibacterial activity of textiles designed for wound healing purposes. Environmental conditions representative of those present at the wound site (i.e., moisture levels, infection, and available nutrients) were evaluated. This work shows that moisture levels were the environmental factor that had the greatest influence on the antimicrobial agent activities tested. These results suggest that it is possible to use the more representative environmental conditions present on the wound bed for in vitro screening of textile antimicrobial activity.
Resumo:
The vulnerability to infection of newborns is associated with a limited ability to mount efficient immune responses. High concentrations of adenosine and prostaglandins in the fetal and neonatal circulation hamper the antimicrobial responses of newborn immune cells. However, the existence of mechanisms counterbalancing neonatal immunosuppression has not been investigated. Remarkably, circulating levels of macrophage migration inhibitory factor (MIF), a proinflammatory immunoregulatory cytokine expressed constitutively, were 10-fold higher in newborns than in children and adults. Newborn monocytes expressed high levels of MIF and released MIF upon stimulation with Escherichia coli and group B Streptococcus, the leading pathogens of early-onset neonatal sepsis. Inhibition of MIF activity or MIF expression reduced microbial product-induced phosphorylation of p38 and ERK1/2 mitogen-activated protein kinases and secretion of cytokines. Recombinant MIF used at newborn, but not adult, concentrations counterregulated adenosine and prostaglandin E2-mediated inhibition of ERK1/2 activation and TNF production in newborn monocytes exposed to E. coli. In agreement with the concept that once infection is established high levels of MIF are detrimental to the host, treatment with a small molecule inhibitor of MIF reduced systemic inflammatory response, bacterial proliferation, and mortality of septic newborn mice. Altogether, these data provide a mechanistic explanation for how newborns may cope with an immunosuppressive environment to maintain a certain threshold of innate defenses. However, the same defense mechanisms may be at the expense of the host in conditions of severe infection, suggesting that MIF could represent a potential attractive target for immune-modulating adjunctive therapies for neonatal sepsis.
Resumo:
We describe the ultrastructural abnormalities of the small bowel surface in 16 infants with persistent diarrhea. The age range of the patients was 2 to 10 months, mean 4.8 months. All patients had diarrhea lasting 14 or more days. Bacterial overgrowth of the colonic microflora in the jejunal secretion, at concentrations above 10(4) colonies/ml, was present in 11 (68.7%) patients. The stool culture was positive for an enteropathogenic agent in 8 (50.0%) patients: for EPEC O111 in 2, EPEC O119 in 1, EAEC in 1, and Shigella flexneri in 1; mixed infections due to EPEC O111 and EAEC in 1 patient, EPEC O119 and EAEC in 1 and EPEC O55, EPEC O111, EAEC and Shigella sonnei in 1. Morphological abnormalities in the small bowel mucosa were observed in all 16 patients, varying in intensity from moderate 9 (56.3%) to severe 7 (43.7%). The scanning electron microscopic study of small bowel biopsies from these subjects showed several surface abnormalities. At low magnification (100X) most of the villi showed mild to moderate stunting, but on several occasions there was subtotal villus atrophy. At higher magnification (7,500X) photomicrographs showed derangement of the enterocytes; on several occasions the cell borders were not clearly defined and very often microvilli were decreased in number and height; in some areas there was a total disappearance of the microvilli. In half of the patients a mucus-fibrinoid pseudomembrane was seen partially coating the enterocytes, a finding that provides additional information on the pathophysiology of persistent diarrhea.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Cirurgia Veterinária - FCAV
Resumo:
Cefotaxime has little antimicrobial activity in vitro against most strains of enterococci, as measured by conventional MICs and MBCs. However, the MICs of cefotaxime against many enterococci are markedly reduced by the addition of serum to the test medium. To assess the relevance of this observation in vivo, we examined the efficacy of cefotaxime in experimental Streptococcus faecalis endocarditis. Since response to antimicrobial agents may vary with the degree of vegetation development, therapeutic efficacy was assessed both in rabbits with newly formed vegetations and in rabbits with well-developed endocardial lesions. Peak serum levels of cefotaxime (50.1 +/- 20.0 micrograms/ml) exceeded the MIC in medium supplemented with serum (4 micrograms/ml), but not in Mueller-Hinton broth alone (greater than 64 micrograms/ml). After 4 days of therapy, animals with newly formed lesions (therapy initiated 1 h after infection, transvalvular catheters removed) had lower mean vegetation bacterial titers than did untreated controls. Among animals with mature vegetations (therapy initiated 12 h after infection, catheters indwelling), the rate of mortality was significantly reduced by cefotaxime therapy. However, no difference in vegetation titers was observed. Thus, cefotaxime demonstrated antienterococcal activity within newly formed vegetations, but did not inhibit bacterial proliferation within well-established vegetations.
Resumo:
Tuberculosis (TB) remains a major public health burden. The immunocompetant host responds to Mycobacterium tuberculosis (MTB) infection by the formation of granulomas, which initially prevent uncontrolled bacterial proliferation and dissemination. However, increasing evidence suggests that granuloma formation promotes persistence of the organism by physically separating infected cells from effector lymphocytes and by inducing a state of non-replicating persistence in the bacilli, making them resistant to the action of antibiotics. Additionally, immune-mediated tissue destruction likely facilitates disease transmission. The granulomatous response is in part due to mycobacterial glycolipid antigens. Therefore, studies were first undertaken to determine the innate mechanisms of mycobacterial cord factor trehalose-6’6-dimycolate (TDM) on granuloma formation. Investigations using knock-out mice suggest that TNF-a is involved in the initiation of the granulomatous response, complement factor C5a generates granuloma cohesiveness, and IL-6 is necessary for maintenance of an established granulomatous responses. Studies were next performed to determine the ability of lactoferrin to modulate the immune response and pathology to mycobacterial cord factor. Lactoferrin is an iron-binding glycoprotein with immunomodulatory properties that decrease tissue damage and promote Th1 responses. Mice challenged with TDM and treated with lactoferrin had decreased size and numbers of granulomas at the peak of the granulomatous response, accompanied by increased IL-10 and TGF-b production. Finally, the ability of lactoferrin to serve as a novel therapeutic for the treatment of TB was performed by aerosol challenging mice with MTB and treating them with lactoferrin added to the drinking water. Mice given tap water had lung log10 CFUs of 7.5 ± 0.3 at week 3 post-infection. Lung CFUs were significantly decreased in mice given lactoferrin starting the day of infection (6.4 ± 0.7) and mice started therapeutically on lactoferrin at day 7 after established infection (6.5 ± 0.4). Total lung inflammation in lactoferrin treated mice was significantly decreased, with fewer areas of macrophages, increased total lymphocytes, and increased numbers of CD4+ and CD8+ cells. The lungs of lactoferrin treated mice had increased CD4+ IFN-g+ cells and IL-17 producing cells on ELISpot analysis. It is hypothesized that lactoferrin decreases bacterial burden during MTB infection by early induction of Th1 responses.
Resumo:
Although Drosophila systemic immunity is extensively studied, little is known about the fly's intestine-specific responses to bacterial infection. Global gene expression analysis of Drosophila intestinal tissue to oral infection with the Gram-negative bacterium Erwinia carotovora revealed that immune responses in the gut are regulated by the Imd and JAK-STAT pathways, but not the Toll pathway. Ingestion of bacteria had a dramatic impact on the physiology of the gut that included modulation of stress response and increased stem cell proliferation and epithelial renewal. Our data suggest that gut homeostasis is maintained through a balance between cell damage due to the collateral effects of bacteria killing and epithelial repair by stem cell division. The Drosophila gut provides a powerful model to study the integration of stress and immunity with pathways associated with stem cell control, and this study should prove to be a useful resource for such further studies.
Resumo:
Staphylococcal enterotoxin B (SEB) is a bacterial superantigen that binds to major histocompatibility complex class II molecules and selectively interacts with T cells that bear certain T cell receptor (TCR) V beta domains. Administration of SEB in adult mice results in initial proliferation of V beta 8+ T cells followed by a state of unresponsiveness resulting from a combination of clonal deletion and clonal anergy in the SEB-reactive population. At this time, it is unclear what relationship exists between the T cells that have proliferated and those that have been deleted or have become anergic. Here we show that only a fraction of the potentially reactive V beta 8+ T cells proliferate in response to SEB in vivo, and that all the cells that have proliferated eventually undergo apoptosis. Virtually no apoptosis can be detected in the nonproliferating V beta 8+ T cells. These data demonstrate a causal relationship between proliferation and apoptosis in response to SEB in vivo, and they further indicate that T cells bearing the same TCR V beta segment can respond differently to the same superantigen. The implications of this differential responsiveness in terms of activation and tolerance are discussed.
Resumo:
We show proof of principle for assessing compound biodegradation at 1-2 mg C per L by measuring microbial community growth over time with direct cell counting by flow cytometry. The concept is based on the assumption that the microbial community will increase in cell number through incorporation of carbon from the added test compound into new cells in the absence of (as much as possible) other assimilable carbon. We show on pure cultures of the bacterium Pseudomonas azelaica that specific population growth can be measured with as low as 0.1 mg 2-hydroxybiphenyl per L, whereas in mixed community 1 mg 2-hydroxybiphenyl per L still supported growth. Growth was also detected with a set of fragrance compounds dosed at 1-2 mg C per L into diluted activated sludge and freshwater lake communities at starting densities of 10(4) cells per ml. Yield approximations from the observed community growth was to some extent in agreement with standard OECD biodegradation test results for all, except one of the examined compounds.
Resumo:
The fruit of the date palm (Phoenix dactylifera L.) is a rich source of dietary fibre and polyphenols. We have investigated gut bacterial changes induced by the whole date fruit extract (digested date extract; DDE) and its polyphenol-rich extract (date polyphenol extract; DPE) using faecal, pH-controlled, mixed batch cultures mimicking the distal part of the human large intestine, and utilising an array of microbial group-specific 16S rRNA oligonucleotide probes. Fluorescence microscopic enumeration indicated that there was a significant increase in the growth of bifidobacteria in response to both treatments, whilst whole dates also increased bacteroides at 24 h and the total bacterial counts at later fermentation time points when compared with DPE alone. Bacterial metabolism of whole date fruit led to the production of SCFA, with acetate significantly increasing following bacterial incubation with DDE. In addition, the production of flavonoid aglycones (myricetin, luteolin, quercetin and apigenin) and the anthocyanidin petunidin in less than 1 h was also observed. Lastly, the potential of DDE, DPE and metabolites to inhibit Caco-2 cell growth was investigated, indicating that both were capable of potentially acting as antiproliferative agents in vitro, following a 48 h exposure. This potential to inhibit growth was reduced following fermentation. Together these data suggest that consumption of date fruits may enhance colon health by increasing beneficial bacterial growth and inhibiting the proliferation of colon cancer cells. This is an early suggestion that date intake by humans may aid in the maintenance of bowel health and even the reduction of colorectal cancer development.
Resumo:
The presence of bacteria in the midgut of mosquitoes antagonizes infectious agents, such as Dengue and Plasmodium, acting as a negative factor in the vectorial competence of the mosquito. Therefore, knowledge of the molecular mechanisms involved in the control of midgut microbiota could help in the development of new tools to reduce transmission. We hypothesized that toxic reactive oxygen species (ROS) generated by epithelial cells control bacterial growth in the midgut of Aedes aegypti, the vector of Yellow fever and Dengue viruses. We show that ROS are continuously present in the midgut of sugar-fed (SF) mosquitoes and a blood-meal immediately decreased ROS through a mechanism involving heme-mediated activation of PKC. This event occurred in parallel with an expansion of gut bacteria. Treatment of sugar-fed mosquitoes with increased concentrations of heme led to a dose dependent decrease in ROS levels and a consequent increase in midgut endogenous bacteria. In addition, gene silencing of dual oxidase (Duox) reduced ROS levels and also increased gut flora. Using a model of bacterial oral infection in the gut, we show that the absence of ROS resulted in decreased mosquito resistance to infection, increased midgut epithelial damage, transcriptional modulation of immune-related genes and mortality. As heme is a pro-oxidant molecule released in large amounts upon hemoglobin degradation, oxidative killing of bacteria in the gut would represent a burden to the insect, thereby creating an extra oxidative challenge to the mosquito. We propose that a controlled decrease in ROS levels in the midgut of Aedes aegypti is an adaptation to compensate for the ingestion of heme.
Resumo:
Atopic dermatitis (AD) is a chronic, inflammatory skin disease with a high prevalence and complex pathogenesis. The skin of AD patients is usually colonized by Staphylococcus aureus (S. aureus); its exotoxins may trigger or enhance the cutaneous inflammation. Several mediators are related to the AD immune imbalance and interleukin-18 (IL-18), an inflammatory cytokine, may play a role in the atopic skin inflammation. To evaluate peripheral blood mononuclear cells (PBMC) proliferation response to staphylococcal enterotoxins A (SEA) and B (SEB) and the levels of IL-18 in adults with AD. Thirty-eight adult patients with AD and 33 healthy controls were analysed. PBMC were stimulated with SEA and SEB, phytohemaglutinin (PHA), pokeweed (PWM), tetanus toxoid (TT) and Candida albicans (CMA). IL-18 secretion from PBMC culture supernatants and sera were measured by ELISA. A significant inhibition of the PBMC proliferation response to SEA, PHA, TT and CMA of AD patients was detected (P <= 0.05). Furthermore, increased levels of IL-18 were detected both in sera and non-stimulated PBMC culture supernatants from AD patients (P <= 0.05). A decreased PBMC proliferation response to distinct antigens and mitogens (TT, CMA, SEA and PHA) in adults with AD suggest a compromised immune profile. IL-18 secretion from AD upon stimulation was similar from controls, which may indicate a diverse mechanism of skin inflammation maintained by Staphylococcus aureus. On the other hand, augmented IL-18 secretion from AD sera and non-stimulated cell culture may enhance the immune dysfunction observed in AD, leading to constant skin inflammation.