963 resultados para axon regeneration


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a method for using long-term organotypic slice co-cultures of the entorhino-hippocampal formation to analyze the axon-regenerative properties of a determined compound. The culture method is based on the membrane interphase method, which is easy to perform and is generally reproducible. The degree of axonal regeneration after treatment in lesioned cultures can be seen directly using green fluorescent protein (GFP) transgenic mice or by axon tracing and histological methods. Possible changes in cell morphology after pharmacological treatment can be determined easily by focal in vitro electroporation. The well-preserved cytoarchitectonics in the co-culture facilitate the analysis of identified cells or regenerating axons. The protocol takes up to a month.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The membrane-associated protein SCG10 is expressed specifically by neuronal cells. Recent experiments have suggested that it promotes neurite outgrowth by increasing microtubule dynamics in growth cones. SCG10 is related to the ubiquitous but neuron-enriched cytosolic protein stathmin. To better understand the role played by SCG10 and stathmin in vivo, we have analyzed the expression and localization of these proteins in both the olfactory epithelium and the olfactory bulb in developing and adult rats, as well as in adult bulbectomized rats. The olfactory epithelium is exceptional in that olfactory receptor neurons constantly regenerate and reinnervate the olfactory bulb throughout animal life-span. SCG10 and stathmin expression in the olfactory receptor neurons was found to be regulated during embryonic and postnatal development and to correlate with neuronal maturation. Whereas SCG10 expression was restricted to immature olfactory receptor neurons (GAP-43-positive, olfactory marker protein-negative), stathmin was also expressed by the basal cells. In the olfactory bulb of postnatal and adult rats, a moderate to strong SCG10 immunoreactivity was present in the olfactory nerve layer, whereas no labeling was detected in the glomerular layer. Olfactory glomeruli also showed no apparent immunoreactivity for several cytoskeletal proteins such as tubulin and microtubule-associated proteins. In unilaterally bulbectomized rats, SCG10 and stathmin were seen to be up-regulated in the regenerating olfactory epithelium at postsurgery stages corresponding to olfactory axon regeneration. Our data strongly suggest that, in vivo, both SCG10 and stathmin may play a role in axonal outgrowth during ontogenesis as well as during axonal regeneration.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Adult mammalian central nervous system (CNS) axons have very limited capacity of regrowth after injury. In recent years, advances in the field of axonal regeneration have proved that neurons do not regenerate, mainly because of the presence of inhibitory molecules. Myelin-associated proteins limit axonal outgrowth and their blockage improves the regeneration of damaged fiber tracts. Three of these proteins, Nogo, MAG and OMgp, share a common neuronal receptor (NgR), and together represent one of the main hindrances to neuronal regeneration. The recent molecular cloning of Nogo and its receptors opened a new door to the study of axon regeneration. However, many of the elements involved in the myelin inhibitory pathway are still unknown, and the preliminary experiments with knockout mice are rather contradictory. Because of this complexity, Nogo and NgR need to be characterized before precise strategies to promote axon regeneration in the CNS can be designed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Strategies aimed at improving spinal cord regeneration after trauma are still challenging neurologists and neuroscientists throughout the world. Many cell-based therapies have been tested, with limited success in terms of functional outcome. In this study, we investigated the effects of human dental pulp cells (HDPCs) in a mouse model of compressive spinal cord injury (SCI). These cells present some advantages, such as the ease of the extraction process, and expression of trophic factors and embryonic markers from both ecto-mesenchymal and mesenchymal components. Young adult female C57/BL6 mice were subjected to laminectomy at T9 and compression of the spinal cord with a vascular clip for 1 min. The cells were transplanted 7 days or 28 days after the lesion, in order to compare the recovery when treatment is applied in a subacute or chronic phase. We performed quantitative analyses of white-matter preservation, trophic-factor expression and quantification, and ultrastructural and functional analysis. Our results for the HDPC-transplanted animals showed better white-matter preservation than the DMEM groups, higher levels of trophic-factor expression in the tissue, better tissue organization, and the presence of many axons being myelinated by either Schwann cells or oligodendrocytes, in addition to the presence of some healthy-appearing intact neurons with synapse contacts on their cell bodies. We also demonstrated that HDPCs were able to express some glial markers such as GFAP and S-100. The functional analysis also showed locomotor improvement in these animals. Based on these findings, we propose that HDPCs may be feasible candidates for therapeutic intervention after SCI and central nervous system disorders in humans.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Changes in gene expression have been measured 24 h after injury to mammalian spinal cords that can and cannot regenerate In opossums there is a critical period of development when regeneration stops being possible at 9 days postnatal cervical spinal cords regenerate, at 12 days they do not By the use of marsupial cDNA microarrays we detected 158 genes that respond differentially to injury at the two ages critical for regeneration For selected candidates additional measurements were made by real time PCR and sites of their expression were shown by immunostaining Candidate genes have been classified so as to select those that promote or prevent regeneration Up regulated by injury at 8 days and/or down regulated by injury at 13 days were genes known to promote growth, such as Mitogen activated protein kinase kinase 1 or transcripton factor TCF7L2 By contrast, at 13 days up regulation occurred of Inhibitory molecules including annexins ephrins and genes related to apoptosis and neurodegeneranve diseases Certain genes such as calmodulin 1 and NOGO changed expression similarly in animals that could and could not regenerate without any additional changes in response to injury These findings confirmed and extended changes of gene expression found in earlier screens on 9 and 12 day preparations without lesions and provide a comprehensive list of genes that serve as a basis for testing how identified molecules singly or in combination, promote and prevent central nervous system regeneration (C) 2010 Elsevier B V All rights reserved

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lesioned axons do not regenerate in the adult mammalian central nervous system, owing to the overexpression of inhibitory molecules such as myelin-derived proteins or chondroitin sulphate proteoglycans. In order to overcome axon inhibition, strategies based on extrinsic and intrinsic treatments have been developed. For myelin-associated inhibition, blockage with NEP1-40, receptor bodies or IN-1 antibodies has been used. In addition, endogenous blockage of cell signalling mechanisms induced by myelin-associated proteins is a potential tool for overcoming axon inhibitory signals. We examined the participation of glycogen synthase kinase 3 (GSK3) and ERK1/2 in axon regeneration failure in lesioned cortical neurons. We also investigated whether pharmacological blockage of GSK3 and ERK1/2 activities facilitates regeneration after myelin-directed inhibition in two models: i) cerebellar granule cells and ii) lesioned entorhino-hippocampal pathway in slice cultures, and whether the regenerative effects are mediated by Nogo Receptor 1 (NgR1). We demonstrate that, in contrast to ERK1/2 inhibition, the pharmacological treatment of GSK3 inhibition strongly facilitated regrowth of cerebellar granule neurons over myelin independently of NgR1. Lastly these regenerative effects were corroborated in the lesioned EHP in NgR1 -/- mutant mice. These results provide new findings for the development of new assays and strategies to enhance axon regeneration in injured cortical connections.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Extracellular matrix (ECM) molecules play important roles in the pathobiology of the major human central nervous system (CNS) inflammatory/demyelinating disease multiple sclerosis (MS). This mini-review highlights some recent work on CNS endothelial cell interactions with vascular basement membrane ECM as part of the cellular immune response, and roles for white matter ECM molecules in demyelination and remyelination in MS lesions. Recent basic and clinical investigations of MS emphasize axonal injury, not only in chronic MS plaques, but also in acute lesions; progressive axonal degeneration in normal-appearing white matter also may contribute to brain and spinal cord atrophy in MS patients. Remodeling of the interstitial white matter ECM molecules that affect axon regeneration, however, is incompletely characterized. Our ongoing immunohistochemical studies demonstrate enhanced ECM versican, a neurite and axon growth-inhibiting white matter ECM proteoglycan, and dermatan sulfate proteoglycans at the edges of inflammatory MS lesions. This suggests that enhanced proteoglycan deposition in the ECM and axonal growth inhibition may occur early and are involved in expansion of active lesions. Decreased ECM proteoglycans and their phagocytosis by macrophages along with myelin in plaque centers imply that there is "injury" to the ECM itself. These results indicate that white matter ECM proteoglycan alterations are integral to MS pathology at all disease stages and that they contribute to a CNS ECM that is inhospitable to axon regrowth/regeneration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A procura de um método que permita um melhor resultado na anastomose de um nervo completamente seccionado é antiga. Há muitos anos a técnica, dita convencional, para aproximação dos cotos afastados do nervo lesado, é realizada com pontos de fios microcirúrgicos. Mais recentemente, a utilização da cola de fibrina tem permitido a adesão de tecidos, como pele, fáscia e outras estruturas anatômicas. O uso da cola de fibrina, na aproximação das extremidades nervosas, tem sido propagada pela indústria como um fato incontestável. No entanto, somente com a realização de estudos comparativos clínicos e laboratoriais tornou-se possível comparar a eficácia da cola de fibrina como agente de reconstituição em lesões de nervos periféricos. Com o objetivo de comprovar essa afirmação foi realizado um trabalho através de uma mensuração nas bainhas de mielina de cotos regenerados de nervos entre diferentes tipos de anastomose nervosas em nervo isquiático de ratos da raça Wistar. Com esse mesmo escopo, foi mensurado o número de axônios em regeneração após o uso dessa cola. Foi utilizada uma amostra de 35 ratos divididos em 03 grupos (A, B e C). No grupo A, 25 ratos foram submetidos à cirurgia com o uso da cola de fibrina para a anastomose nervosa. No grupo B, 05 ratos foram submetidos ao mesmo procedimento; entretanto, ao reparo nervoso acrescentou-se a utilização de dois pontos opostos de mononylon 9-0, usando-se cola de fibrina no seu interior. No terceiro grupo (C), 05 ratos foram submetidos a neurorrafia com 6 a 8 pontos de mononylon 9-0 sem auxílio da cola de fibrina (anastomose nervosa convencional). Os animais foram submetidos a um novo procedimento após 90 dias, quando o nervo isquiático tratado foi retirado e encaminhado para o estudo. Após esse procedimento, os animais foram sacrificados. Cabe esclarecer que os espécimens foram submetidas a uma preparação histológica, sendo avaliados. Para tanto, foi realizada uma mensuração da espessura média da bainha de mielina das fibras regeneradas. Também foi realizada uma medição do número de axônios regenerados em um milímetro quadrado. Com base nesses achados, foram comparados os resultados.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nerve regeneration in a sensory nerve was obtained by the application of different techniques: inside-out vein graft (IOVG group) and standard vein graft (SVG group). These techniques provide a good microenvironment for axon regeneration in motor nerves, but their efficiency for regeneration of sensory nerves is controversial. The saphenous nerve was sectioned and repaired by the inside-out and standard vein graft techniques in rats. After 4, 12, and 20 weeks the graft and the distal stump were observed under electron microscopy. In each studied period, the pattern, diameters, and thickness of the myelin sheaths of the regenerated axons were measured in the graft and distal stump. A comparative study about the regenerated nerve fibers by these two different techniques was performed. Regenerated nerve fibers were prominent in both vein grafts 4 weeks after the surgical procedures. On the other hand, in the distal stump, regenerated nerve fibers were observed only from 12 weeks. In both inside-out vein graft and standard vein graft statistical difference was not observed about the diameters and thickness of the myelinated fibers after 20 weeks. On the other hand, the inside-out group had greater regenerated axon number when compared to the standard group. There is a capillary invasion in both graft and distal stump, especially in the IOVG group. The regenerated axons follow these capillaries all the time like satellite microfascicles. After 20 weeks, the diameters of regenerated fibers repaired by the standard vein graft technique were closer to the normal fibers compared to the inside-out vein graft. On the other hand, the pattern of these regenerated axons was better in the IOVG group.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Anti-GM1 antibodies are present in some patients with autoimmune neurological disorders. These antibodies are most frequently associated with acute immune neuropathy called Guillain-Barré syndrome (GBS). Some clinical studies associate the presence of these antibodies with poor recovery in GBS. The patients with incomplete recovery have failure of nerve repair, particularly axon regeneration. Our previous work indicates that monoclonal antibodies can inhibit axon regeneration by engaging cell surface gangliosides (Lehmann et al., 2007). We asked whether passive transfer of human anti-GM1 antibodies from patients with GBS modulate axon regeneration in an animal model. Human anti-GM1 antibodies were compared with other GM1 ligands, cholera toxin B subunit and a monoclonal anti-GM1 antibody. Our results show that patient derived anti-GM1 antibodies and cholera toxin beta subunit impair axon regeneration/repair after PNS injury in mice. Comparative studies indicated that the antibody/ligand-mediated inhibition of axon regeneration is dependent on antibody/ligand characteristics such as affinity-avidity and fine specificity. These data indicate that circulating immune effectors such as human autoantibodies, which are exogenous to the nervous system, can modulate axon regeneration/nerve repair in autoimmune neurological disorders such as GBS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nerve cells depend on specific interactions with glial cells for proper function. Myelinating glial cells are thought to associate with neuronal axons, in part, via the cell-surface adhesion protein, myelin-associated glycoprotein (MAG). MAG is also thought to be a major inhibitor of neurite outgrowth (axon regeneration) in the adult central nervous system. Primary structure and in vitro function place MAG in an immunoglobulin-related family of sialic acid-binding lactins. We report that a limited set of structurally related gangliosides, known to be expressed on myelinated neurons in vivo, are ligands for MAG. When major brain gangliosides were adsorbed as artificial membranes on plastic microwells, only GT1b and GD1a supported cell adhesion of MAG-transfected COS-1 cells. Furthermore, a quantitatively minor ganglioside expressed on cholinergic neurons, GQ1b alpha (also known as Chol-1 alpha-b), was much more potent than GT1b or GD1a in supporting MAG-mediated cell adhesion. Adhesion to either GT1b or GQ1b alpha was abolished by pretreatment of the adsorbed gangliosides with neuraminidase. On the basis of structure-function studies of 19 test glycosphingolipids, an alpha 2,3-N-acetylneuraminic acid residue on the terminal galactose of a gangliotetraose core is necessary for MAG binding, and additional sialic acid residues linked to the other neutral core saccharides [Gal(II) and GalNAc(III)] contribute significantly to binding affinity. MAG-mediated adhesion to gangliosides was blocked by pretreatment of the MAG-transfected COS-1 cells with anti-MAG monoclonal antibody 513, which is known to inhibit oligodendrocyte-neuron binding. These data are consistent with the conclusion that MAG-mediated cell-cell interactions involve MAG-ganglioside recognition and binding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study investigated the effectiveness of mesenchymal stem cells (MSCs) associated with a fibrin scaffold (FS) for the peripheral regenerative process after nerve tubulization. Adult female Lewis rats received a unilateral sciatic nerve transection followed by repair with a polycaprolactone (PCL)-based tubular prosthesis. Sixty days after injury, the regenerated nerves were studied by immunohistochemistry. Anti-p75NTR immunostaining was used to investigate the reactivity of the MSCs. Basal labeling, which was upregulated during the regenerative process, was detected in uninjured nerves and was significantly greater in the MSC-treated group. The presence of GFP-positive MSCs was detected in the nerves, indicating the long term survival of such cells. Moreover, there was co-localization between MSCs and BNDF immunoreactivity, showing a possible mechanism by which MSCs improve the reactivity of SCs. Myelinated axon counting and morphometric analyses showed that MSC engrafting led to a higher degree of fiber compaction combined with a trend of increased myelin sheath thickness, when compared with other groups. The functional result of MSC engrafting was that the animals showed higher motor function recovery at the seventh and eighth week after lesion. The findings herein show that MSC+FS therapy improves the nerve regeneration process by positively modulating the reactivity of SCs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unlike injury to the peripheral nervous system (PNS), where injured neurons can trigger a regenerative program that leads to axonal elongation and in some cases proper reinnervation, after injury to the central nervous system (CNS) neurons fail to produce the same response. The regenerative program includes the activation of several injury signals that will lead to the expression of genes associated with axonal regeneration. As a consequence, the spawned somatic response will ensure the supply of molecular components required for axonal elongation. The capacity of some neurons to trigger a regenerative response has led to investigate the mechanisms underlying neuronal regeneration. Thus, non-regenerative models (like injury to the CNS) and regenerative models (such as injury to the PNS) were used to understand the differences underlying those two responses to injury. To do so, the regenerative properties of dorsal root ganglion (DRG) neurons were addressed. This particular type of neurons possesses two branches, a central axon, that has a limited capacity to regenerate; and a peripheral axon, where regeneration can occur over long distances. In the first paradigm used to understand the neuronal regeneration mechanisms, we evaluated the activation of injury signals in a non-regenerative model. Injury signals include the positive injury signals, which are described as being enhancers of axonal regeneration by activating several transcription factors. The currently known positive injury signals are ERK, JNK and STAT3. To evaluate whether the lack of regeneration following injury to the central branch of DRG neurons was due to inactivation of these signals, activation of the transcription factors pELK-1, p-c-jun (downstream targets of ERK and JNK, respectively) and pSTAT3 were examined. Results have shown no impairment in the activation of these signals. As a consequence, we further proceed with evaluation of other candidates that could participate in axonal regeneration failure. By comparing the protein profiles that were triggered following either injury to the central branch of DRG neurons or injury to their peripheral branch, we were able to identify high levels of GSK3-β, ROCKII and HSP-40 after injury to the central branch of DRG neurons. While in vitro knockdown of HSP-40 in DRG neurons showed to be toxic for the cells, evaluation of pCRMP2 (a GSK3-β downstream target) and pMLC (a ROCKII downstream target), which are known to impair axonal regeneration, revealed high levels of both proteins following injury to the central branch when comparing with injury to their peripheral one. Altogether, these results suggest that activation of positive injury signals is not sufficient to elicit axonal regeneration; HSP-40 is likely to participate in the cell survival program; whereas GSK3-β and ROCKII activity may condition the regenerative capacity following injury to the nervous system.(...)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peripheral nerve injury is a serious problem affecting significantly patients' life. Autografts are the "gold standard" used to repair the injury gap, however, only 50% of patients fully recover from the trauma. Artificial conduits are a valid alternative to repairing peripheral nerve. They aim at confining the nerve environment throughout the regeneration process, and providing guidance to axon outgrowth. Biocompatible materials have been carefully designed to reduce inflammation and scar tissue formation, but modifications of the inner lumen are still required in order to optimise the scaffolds. Biomicking the native neural tissue with extracellular matrix fillers or coatings showed great promises in repairing longer gaps and extending cell survival. In addition, extracellular matrix molecules provide a platform to further bind growth factors that can be released in the system over time. Alternatively, conduit fillers can be used for cell transplantation at the injury site, reducing the lag time required for endogenous Schwann cells to proliferate and take part in the regeneration process. This review provides an overview on the importance of extracellular matrix molecules in peripheral nerve repair.