25 resultados para axion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motivated by the recently proposed Kerr/CFT correspondence, we investigate the holographic dual of the extremal and non-extremal rotating linear dilaton black hole in Einstein-Maxwell-Dilaton-Axion Gravity. For the case of extremal black hole, by imposing the appropriate boundary condition at spatial infinity of the near horizon extremal geometry, the Virasoro algebra of conserved charges associated with the asymptotic symmetry group is obtained. It is shown that the microscopic entropy of the dual conformal field given by Cardy formula exactly agrees with Bekenstein-Hawking entropy of extremal black hole. Then, by rewriting the wave equation of massless scalar field with sufficient low energy as the SLL(2, R) x SLR(2, R) Casimir operator, we find the hidden conformal symmetry of the non-extremal linear dilaton black hole, which implies that the non-extremal rotating linear dilaton black hole is holographically dual to a two dimensional conformal field theory with the non-zero left and right temperatures. Furthermore, it is shown that the entropy of non-extremal black hole can be reproduced by using Cardy formula.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rates of axion emission by nucleon-nucleon bremsstrahlung are calculated with the inclusion of the full momentum contribution from a nuclear one pion exchange (OPE) potential. The contributions of the neutron-neutron (nn), proton-proton (pp) and neutron-proton (np) processes in both the non-degenerate and degenerate limits are explicitly given. We find that the finite-momentum corrections to the emissivities are quantitatively significant for the non-degenerate regime and temperature-dependent, and should affect the existing axion mass hounds. The trend of these nuclear effects is to diminish the emissivities. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that by introducing appropriate local Z(N)(Ngreater than or equal to13) symmetries in electroweak models it is possible to implement an automatic Peccei-Quinn symmetry, at the same time keeping the axion protected against gravitational effects. Although we consider here only an extension of the standard model and a particular 3-3-1 model, the strategy can be used in any kind of electroweak model. An interesting feature of this 3-3-1 model is that if we add (i) right-handed neutrinos, (ii) the conservation of the total lepton number, and (iii) a Z(2) symmetry, the Z(13) and the chiral Peccei-Quinn U(1)P-Q symmetries are both accidental symmetries in the sense that they are not imposed on the Lagrangian but are just a consequence of the particle content of the model, its gauge invariance, renormalizability, and Lorentz invariance. In addition, this model has no domain wall problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that Peccei-Quinn and lepton number symmetries can be a natural outcome in a 3-3-1 model with right-handed neutrinos after imposing a Z(11)circle timesZ(2) symmetry. This symmetry is suitably accommodated in this model when we augment its spectrum by including merely one singlet scalar field. We work out the breaking of the Peccei-Quinn symmetry, yielding the axion, and study the phenomenological consequences. The main result of this work is that the solution to the strong CP problem can be implemented in a natural way, implying an invisible axion phenomenologically unconstrained, free of domain wall formation, and constituting a good candidate for the cold dark matter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that by imposing local Z(13)circle timesZ(3) symmetries in an SU(2)circle timesU(1) electroweak model we can implement an invisible axion in such a way that (i) the Peccei-Quinn symmetry is an automatic symmetry of the classical Lagrangian, and (ii) the axion is protected from semiclassical gravitational effects. In order to be able to implement such a large discrete symmetry, and at the same time allow a general mixing in each charge sector, we introduce right-handed neutrinos and enlarge the scalar sector of the model. The domain wall problem is briefly considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By introducing local Z(N) symmetries with N=11,13 in two 3-3-1 models, it is possible to implement an automatic Peccei-Quinn symmetry, keeping the axion protected against gravitational effects at the same time. Both models have a Z(2) domain wall problem and the neutrinos are strictly Dirac particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that in any invisible axion model due to the effects of effective nonrenormalizable interactions related to an energy scale near the Peccei-Quinn, grand unification or even the Planck scale, active neutrinos necessarily acquire masses in the sub-eV range. Moreover, if sterile neutrinos are also included and if appropriate cyclic Z(N) symmetries are imposed, it is possible that some of these neutrinos are heavy while others are light.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We calculate the relic abundance of mixed axion/neutralino cold dark matter which arises in R-parity conserving supersymmetric (SUSY) models wherein the strong CP problem is solved by the Peccei-Quinn (PQ) mechanism with a concommitant axion/saxion/axino supermultiplet. By numerically solving the coupled Boltzmann equations, we include the combined effects of 1. thermal axino production with cascade decays to a neutralino LSP, 2. thermal saxion production and production via coherent oscillations along with cascade decays and entropy injection, 3. thermal neutralino production and re-annihilation after both axino and saxion decays, 4. gravitino production and decay and 5. axion production both thermally and via oscillations. For SUSY models with too high a standard neutralino thermal abundance, we find the combined effect of SUSY PQ particles is not enough to lower the neutralino abundance down to its measured value, while at the same time respecting bounds on late-decaying neutral particles from BBN. However, models with a standard neutralino underabundance can now be allowed with either neutralino or axion domination of dark matter, and furthermore, these models can allow the PQ breaking scale f(a) to be pushed up into the 10(14) - 10(15) GeV range, which is where it is typically expected to be in string theory models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is focused on axions and axion like particles (ALPs) and their possible relation with the 3.55 keV photon line detected, in recent years, from galaxy clusters and other astrophysical objects. We focus on axions that come from string compactification and we study the vacuum structure of the resulting low energy 4D N=1 supergravity effective field theory. We then provide a model which might explain the 3.55 keV line through the following processes. A 7.1 keV dark matter axion decays in two light axions, which, in turn, are transformed into photons thanks to the Primakoff effect and the existence of a kinetic mixing between two U(1)s gauge symmetries belonging respectively to the hidden and the visible sector. We present two models, the first one gives an outcome inconsistent with experimental data, while the second can yield the desired result.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the first results of searches for axions and axionlike particles with the XENON100 experiment. The axion-electron coupling constant, g Ae , has been probed by exploiting the axioelectric effect in liquid xenon. A profile likelihood analysis of 224.6 live days × 34-kg exposure has shown no evidence for a signal. By rejecting g Ae larger than 7.7×10 −12 (90% C.L.) in the solar axion search, we set the best limit to date on this coupling. In the frame of the DFSZ and KSVZ models, we exclude QCD axions heavier than 0.3 and 80  eV/c 2 , respectively. For axionlike particles, under the assumption that they constitute the whole abundance of dark matter in our galaxy, we constrain g Ae to be lower than 1×10 −12 (90% C.L.) for masses between 5 and 10  keV/c 2 .

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the properties of walls of marginal stability for BPS decays in a class of N = 2 theories. These theories arise in N = 2 string compactifications obtained as freely acting orbifolds of N = 4 theories, such theories include the STU model and the FHSV model. The cross sections of these walls for a generic decay in the axion-dilaton plane reduce to lines or circles. From the continuity properties of walls of marginal stability we show that central charges of BPS states do not vanish in the interior of the moduli space. Given a charge vector of a BPS state corresponding to a large black hole in these theories, we show that all walls of marginal stability intersect at the same point in the lower half of the axion-dilaton plane. We isolate a class of decays whose walls of marginal stability always lie in a region bounded by walls formed by decays to small black holes. This enables us to isolate a region in moduli space for which no decays occur within this class. We then study entropy enigma decays for such models and show that for generic values of the moduli, that is when moduli are of order one compared to the charges, entropy enigma decays do not occur in these models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show that in an SU(2)circle timesU(1) model with a Dine-Fischler-Srednicki-like invisible axion it is possible to obtain (i) the convergence of the three gauge coupling constants at an energy scale near the Peccei-Quinn scale; (ii) the correct value for sin(2)theta<^>(W)(M-Z); (iii) the stabilization of the proton by the cyclic Z(13)circle timesZ(3) symmetries which also stabilize the axion as a solution to the strong CP problem. Concerning the convergence of the three coupling constants and the prediction of the weak mixing angle at the Z peak, this model is as good as the minimal supersymmetric standard model with mu(SUSY)=M-Z. We also consider the standard model with six and seven Higgs doublets. The main calculations were done in the 1-loop approximation but we briefly consider the 2-loop contributions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose an SU(5) grand unified model with an invisible axion and the unification of the three coupling constants which is in agreement with the values, at M(Z), of alpha, alpha(s), and sin(2)theta(W). A discrete, anomalous, Z(13) symmetry implies that the Peccei-Quinn symmetry is an automatic symmetry of the classical Lagrangian protecting, at the same time, the invisible axion against possible semiclassical gravity effects. Although the unification scale is of the order of the Peccei-Quinn scale the proton is stabilized by the fact that in this model the standard model fields form the SU(5) multiplets completed by new exotic fields and, also, because it is protected by the Z(13) symmetry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show that in SU(3)(C) circle times SU(3)(L) circle times U(1)(N) (3-3-1) models embedded with a singlet scalar playing the role of the axion, after imposing scale invariance, the breaking of Peccei-Quinn symmetry occurs through the one-loop effective potential for the singlet field. We, then, analyze the structure of spontaneous symmetry breaking by studying the new scalar potential for the model, and verify that electroweak symmetry breaking is tightly connected to the 3-3-1 breaking by the strong constraints among their vacuum expectation values. This offers a valuable guide to write down the correct pattern of symmetry breaking for multi-scalar theories. We also obtained that the accompanying massive pseudo-scalar, instead of acquiring mass of order of Peccei-Quinn scale as we would expect, develops a mass at a much lower scale, a consequence solely of the breaking via Coleman-Weinberg mechanism. (c) 2005 Published by Elsevier B.V.