961 resultados para axial rotation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Axial vertebral rotation, an important parameter in the assessment of scoliosis may be identified on X-ray images. In line with the advances in the field of digital radiography, hospitals have been increasingly using this technique. The objective of the present study was to evaluate the reliability of computer-processed rotation measurements obtained from digital radiographs. A software program was therefore developed, which is able to digitally reproduce the methods of Perdriolle and Raimondi and to calculate semi-automatically the rotation degree of vertebra on digital radiographs. Three independent observers estimated vertebral rotation employing both the digital and the traditional manual methods. Compared to the traditional method, the digital assessment showed a 43% smaller error and a stronger correlation. In conclusion, the digital method seems to be reliable and enhance the accuracy and precision of vertebral rotation measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electromyographic (EMG) studies have shown that a large number of trunk muscles are recruited during axial rotation. The functional roles of these trunk muscles in axial rotation are multiple and have not been well investigated. In addition, there is no information on the coupling torque at different exertion levels during axial rotation. The aim of the study was to investigate the functional roles of rectus abdominis. external oblique. internal oblique, latissimus dorsi, iliocostalis lumborum and multifidus during isometric right and left axial rotation at 100%, 70%, 50% and 30% maximum voluntary contractions (MVC) in a standing position. The coupling torques in sagittal and coronal planes were measured during axial rotation to examine the coupling nature of torque at different levels of exertions. Results showed that the coupled sagittal torque switches from nil to flexion at maximum exertion of axial rotation. Generally, higher EMG activities were shown at higher exertion levels for all the trunk muscles. Significant differences in activity between the right and left axial rotation exertions were demonstrated in external oblique, internal oblique, latissimus dorsi and iliocostalis lumborum while no difference was shown in rectus abdominis and multifidus. These results demonstrated the different functional roles of trunk muscles during axial rotation. This is important considering that the abdominal and back muscles not only produce torque but also maintain the spinal posture and stability during axial rotation exertions. The changing coupling torque direction in the sagittal plane when submaximal to maximal exertions were compared may indicate the complex nature of the kinetic coupling of trunk muscles. (C) 2001 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Study Design. A cross-sectional case-control study. Objectives. To examine the effect of fatigue on torque output as well as electromyographic frequency and amplitude values of trunk muscles during isometric axial rotation exertion in back pain patients and to compare the results with a matched control group. Summary of Background Data. Back pain patients exhibited different activation strategies in trunk muscles during the axial rotation exertions. Fatigue changes of abdominal and back muscles during axial rotation exertion have not been examined in patients with back pain. Methods. Twelve back pain patients and 12 matched controls performed isometric fatiguing axial rotation to both sides at 80% maximum voluntary contraction in a standing position. During the fatiguing exertion, electromyographic changes of rectus abdominis, external oblique, internal oblique, latissimus dorsi, iliocostalis lumborum, and multifidus were recorded bilaterally. The primary torque in the transverse plane and the coupling torques in sagittal and coronal planes were also measured. Results. No difference in the endurance capacity was found between back pain and control groups. At the initial period of the exertion, back pain patients demonstrated a statistical trend (P = 0.058) of greater sagittal coupling torque as well as lower activity of rectus abdominis and multifidus and higher activity in external oblique. During the fatigue process similar changes of coupling torque were demonstrated in both sagittal and coronal planes, but a smaller fatigue rate for right external oblique, increase in median frequency for latissimus dorsi, and lesser increase in activity for back muscles were found in the back pain group compared with the control group. Conclusions. Alterations in electromyographic activation and fatigue rates of abdominal and back muscles demonstrated during the fatigue process provide insights into the muscle dysfunctions in back pain and may help clinicians to devise more rational treatment strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abnormal patterns of trunk muscle activity could affect the biomechanics of spinal movements and result in back pain. The present study aimed to examine electromyographic (EMG) activity of abdominal and back muscles as well as triaxial torque output during isometric axial rotation at different exertion levels in back pain patients and matched controls. Twelve back pain patients and 12 matched controls performed isometric right and left axial rotation at 100%, 70%, 50%, and 30% maximum voluntary contractions in a standing position. Surface EMG activity of rectus abdominis, external oblique, internal oblique, latissimus dorsi, iliocostalis lumborum and multifidus were recorded bilaterally. The primary torque in the transverse plane and the coupling torques in sagittal and coronal planes were measured. Results showed that there was a trend (P = 0.08) of higher flexion coupling torque during left axial rotation exertion in back pain patients. Higher activity for external oblique and lower activity for multifidus was shown during left axial rotation exertion in back pain group when compared to the control group. In right axial rotation, back pain patients exhibited lesser activity of rectus abdominis at higher levels of exertion when compared with matched controls. These findings demonstrated that decreased activation of one muscle may be compensated by overactivity in other muscles. The reduced levels of activity of the multifidus muscle during axial rotation exertion in back pain patients may indicate that spinal stability could be compromised. Future studies should consider these alternations in recruitment patterns in terms of spinal stability and internal loading. The findings also indicate the importance of training for coordination besides the strengthening of trunk muscles during rehabilitation process. (C) 2002 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: To examine the changes in torque output resulting from fatigue, as well as changes in electromyographic measures of trunk muscles during isometric axial rotation and to compare these changes between directions of axial rotation. Design: Subjects performed fatiguing right and left isometric axial rotation of the trunk at 80% of maximum voluntary contraction while standing upright. Setting: A rehabilitation center. Participants: Twenty-three men with no history of back pain. Interventions: Not applicable. Main Outcome Measures: Surface electromyographic Signals were recorded from 6 trunk muscles bilaterally. The primary torque in the transverse plane and the coupling torques in sagittal and coronal planes were also measured. Results: During the fatiguing axial rotation contraction, coupling torques of both sagittal and coronal planes were slightly decreased and no difference was found between directions of axial rotation. Decreasing median frequency and an increase in electromyographic amplitude were also found in trunk muscles with different degrees of changes in individual muscles. There were significant differences (P

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: The aim of the present study was to investigate the between-days reliability of electromyographic (EMG) measurement of 6 bilateral trunk muscles and also the torque output in 3 planes during isometric right and left axial rotation at different exertion levels. Methods: Ten healthy subjects performed isometric right and left axial rotation at 100, 70, 50 and 30% maximum voluntary contractions in two testing sessions at least 7 days apart. EMG amplitude and frequency analyses of the recorded surface EMG signals were performed for rectus abdominis, external oblique, internal oblique, latissimus dorsi, iliocostalis lumborum and multifidus bilaterally. The primary torque in the transverse plane and the coupling torques in sagittal and coronal planes were measured. Results: For both EMG amplitude and frequency values, good (intraclass correlation coefficient, ICC = 0.75-0.89) to excellent (ICC greater than or equal to 0.90) reliability was found in the 6 trunk muscles at different exertion levels during axial rotation. The reliability of both maximal isometric axial rotation torque and coupling torques in sagittal and coronal planes were found to be excellent (ICC greater than or equal to 0.93). Conclusions: Good to excellent reliability of EMG measures of trunk muscles and torque measurements during isometric axial rotation was demonstrated. This provides further confidence of using EMG and triaxial torque assessment as outcome measures in rehabilitation and in the evaluation of the human performance in the work place. (C) 2003 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Most external assessments of cervical range of motion assess the upper and lower cervical regions simultaneously. This study investigated the within and between days reliability of the clinical method used to bias this movement to the upper cervical region, namely measuring rotation of the head and neck in a position of full cervical flexion. Measurements were made using the Fastrak measurement system and were conducted by one operator. Results indicated high levels of within and between days repeatability (range of ICC2,1 values: 0.85-0.95). The ranges of axial rotation to right and left, measured with the neck positioned in full flexion, were approximately 56% and 50%, respectively of total cervical rotation, which relates well to the proportional division of rotation in the upper and lower cervical regions. These results suggest that this method of measuring rotation would be appropriate for use in subject studies where movement dysfunction is present in the upper cervical region, such as those with cervicogenic headache. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of the present study was to determine the frequency of atlanto-axial rotatory subluxations (AARS) in multi detector computed tomography (MDCT) performed on human corpses for forensic purposes and to investigate whether these are a physiological postmortem finding or indicate a trauma to the neck region. 80 forensic cases examined with MDCT from November 2003 to March 2007 were included in the study. The study was approved by the regional ethics committee. For each case volumes were rendered and investigated with reference to suspected AARS and any other anomalies of the head and neck region. The rotation of the head as well as in the atlanto-axial joint were measured and occurring AARS were judged according Fielding's classification. The finding of AARS was correlated to case criteria such as postmortem head rotation, sex, age, cause of death, time since death and further autopsy results. Statistical analysis was performed using Fisher's exact test, Wilcoxon's rank sums test and Chi-square test with Pearson approximation. 70% (n=56) of the cases included in the study presented with an AARS. A strong correlation (P<.0001) between suspected AARS and postmortem head rotation was found. Two cases presented with an atlanto-axial rotation greater than the head rotation. One showed an undiscovered lateral dislocation of the atlas, and one an unfused atlas-ring. There was no correlation to any further investigated case criteria. Ipsilateral AARS with head rotation alone does not indicate trauma to the neck. PmCT can substantially support forensic examinations of the skeleton, especially in body regions, which are elaborate to access at autopsy, such as the cervical spine. Isolated AARS (Fielding type I) on pmCT is usually a normal finding associated with ipsilateral head rotation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The role of the abdominal muscles in trunk rotation is not comprehensively understood. This study investigated the electromyographic (EMG) activity of anatomically distinct regions of the abdominal muscles during trunk rotation in six subjects with no history of spinal pain. Fine-wire electrodes were inserted into the right abdominal wall; upper region of transversus abdominis (TrA), middle region of TrA, obliquus internus abdominis (OI) and obliquus externus abdominis (OE), and lower region of TrA and OI. Surface electrodes were placed over right rectus abdominis (RA). Subjects performed trunk rotation to the left and right in sitting by rotating their pelvis relative to a fixed thorax. EMG activity was recorded in relaxed supine and sitting, and during an isometric hold at end range. TrA was consistently active during trunk rotation, with the recruitment patterns of the upper fascicles opposite to that of the middle and lower fascicles. During left rotation, there was greater activity of the lower and middle regions of contralateral TrA and the lower region of contralateral OI. The upper region of ipsilateral TrA and OE were predominately active during right rotation. In contrast, there was no difference in activity of RA and middle OI between directions (although middle OI was different between directions for all but one subject). This study indicates that TrA is active during trunk rotation, but this activity varies between muscle regions. These normative data will assist in understanding the role of TrA in lumbopelvic control and movement, and the effect of spinal pain on abdominal muscle recruitment.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Study Design. Development of an automatic measurement algorithm and comparison with manual measurement methods. Objectives. To develop a new computer-based method for automatic measurement of vertebral rotation in idiopathic scoliosis from computed tomography images and to compare the automatic method with two manual measurement techniques. Summary of Background Data. Techniques have been developed for vertebral rotation measurement in idiopathic scoliosis using plain radiographs, computed tomography, or magnetic resonance images. All of these techniques require manual selection of landmark points and are therefore subject to interobserver and intraobserver error. Methods. We developed a new method for automatic measurement of vertebral rotation in idiopathic scoliosis using a symmetry ratio algorithm. The automatic method provided values comparable with Aaro and Ho's manual measurement methods for a set of 19 transverse computed tomography slices through apical vertebrae, and with Aaro's method for a set of 204 reformatted computed tomography images through vertebral endplates. Results. Confidence intervals (95%) for intraobserver and interobserver variability using manual methods were in the range 5.5 to 7.2. The mean (+/- SD) difference between automatic and manual rotation measurements for the 19 apical images was -0.5 degrees +/- 3.3 degrees for Aaro's method and 0.7 degrees +/- 3.4 degrees for Ho's method. The mean (+/- SD) difference between automatic and manual rotation measurements for the 204 endplate images was 0.25 degrees +/- 3.8 degrees. Conclusions. The symmetry ratio algorithm allows automatic measurement of vertebral rotation in idiopathic scoliosis without intraobserver or interobserver error due to landmark point selection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Study Design. A comparative study of cervical range of motion in asymptomatic persons and those with whiplash. Objectives. To compare the primary and conjunct ranges of motion of the cervical spine in asymptomatic persons and those with persistent whiplash-associated disorders, and to investigate the ability of these measures of range of motion to discriminate between the groups. Summary of Background. Evidence that range of motion is an effective indicator of physical impairment in the cervical spine is not conclusive. Few studies have evaluated the ability to discriminate between asymptomatic persons and those with whiplash on the basis of range of motion or compared three-dimensional in vivo measures of range of motion in asymptomatic persons and those with whiplash-associated disorders. Methods. The study participants were 89 asymptomatic volunteers (41 men, 48 women; mean age 39.2 years) and 114 patients with persistent whiplash-associated disorders (22 men, 93 women; mean age 37.2 years) referred to a whiplash research unit for assessment of their cervical region. Range of cervical motion was measured in three dimensions with a computerized, electromagnetic, motion-tracking device. The movements assessed were flexion, extension, left and right lateral flexion, and left and right rotation. Results. Range of motion was reduced in all primary movements in patients with persistent whiplash-associated disorder. Sagittal plane movements were proportionally the most affected. On the basis of primary and conjunct range of motion, age, and gender, 90.3% of study participants could be correctly categorized as asymptomatic or as having whiplash (sensitivity 86.2%, specificity 95.3%). Conclusions. Range of motion was capable of discriminating between asymptomatic persons and those with persistent whiplash-associated disorders.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inconclusive findings have been shown in previous studies comparing lumbar range of movement (LROM) and lumbar lordosis between back pain patients and healthy subjects. In these studies, confounding variables such as age, gender, height, obesity, and pain level were usually not well controlled. The present study aimed to compare LROM and lumbar lordosis between back pain patients and matched controls. Fifteen male back pain patients and 15 age-, height-, obesity-, and physical activity-matched male controls were investigated. To minimize the effect of pain on the measurements, only patients with minimal or no pain at the time of testing were included in the study. Inclinometer technique was used for the evaluation of LROM in flexion, extension and lateral flexion as well as lumbar lordosis. A lumbar rotameter was used for measuring axial rotation. Pelvic motion was limited by a pelvic restraint device during LROM measurements. Results showed that there were no significant differences between the back pain and control groups in flexion, extension, lateral flexion and axial rotation LROM and also in lumbar lordosis. This may indicate that when a back pain patient is not in pain, LROM and lumbar lordosis may not be the measures that distinguish between back pain patients and subjects without back pain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: The aims of the present study were to examine electromyographic (EMG) activity of six bilateral trunk muscles during maximal contraction in three cardinal planes, and to determine the direction of contraction that gives maximal activation for each muscle. both for healthy subjects and back-pain patients. Methods: Twenty-eight healthy subjects and 15 back-pain patients performed maximum voluntary contractions in three cardinal planes, Surface EMG signals were recorded from rectus abdominis, external oblique, internal oblique, latissimus dorsi, iliocostalis lumborum, and multifidus bilaterally. Root mean square values of the EMG data were calculated to quantify I the amplitude of EMG signals. Results: For both healthy subjects and back-pain patients. one single direction of contraction was found to give the maximum EMG signals for most muscles. Rectus abdominis demonstrated maximal activity in trunk flexion, external oblique in lateral flexion. internal oblique in axial rotation, and multifidus in extension. For the latissimus dorsi and iliocostalis lumborum. maximal activity was demonstrated in more than one cardinal plane. Conclusion: This study has implications for future research involving normalization of muscle activity to maximal levels required in many trunk EMG studies. As the latissimus dorsi and iliocostalis lumborum demonstrate individual differences in the plane that gives maximal activity, these muscles may require testing in more than one plane.