906 resultados para autonomous operation
Resumo:
This paper shows how multiple interconnected microgrids can operate in autonomous mode in a self–healing medium voltage network. This is possible if based on network self– healing capability, the neighbour microgrids are interconnected and a surplus generation capacity is available in some of the Distributed Energy Resources (DERs) of the interconnected microgrids. This will reduce or prevent load shedding within the microgrids with less generation capacity. Therefore, DERs in a microgrid are controlled such that they share the local load within that microgrid as well as the loads in other interconnected microgrids. Different control algorithms are proposed to manage the DERs at different operating conditions. On the other hand, a Distribution Static Compensator (DSTATCOM) is employed to regulate the voltage. The efficacy of the proposed power control, sharing and management among DERs in multiple interconnected microgrids is validated through extensive simulation studies using PSCAD/EMTDC.
Resumo:
This paper describes an autonomous navigation system for a large underground mining vehicle. The control architecture is based on a robust reactive wall-following behaviour. To make it purposeful we provide driving hints derived from an approximate nodal-map. For most of the time, the vehicle is driven with weak localization (odometry). This need only be improved at intersections where decisions must be made – a technique we refer to as opportunistic localization. The paper briefly reviews absolute and relative navigation strategies, and describes an implementation of a reactive navigation system on a 30 tonne Load-Haul-Dump truck. This truck has achieved full-speed autonomous operation at an artificial test mine, and subsequently, at a operational underground mine.
Resumo:
To minimise the number of load sheddings in a microgrid (MG) during autonomous operation, islanded neighbour MGs can be interconnected if they are on a self-healing network and an extra generation capacity is available in the distributed energy resources (DER) of one of the MGs. In this way, the total load in the system of interconnected MGs can be shared by all the DERs within those MGs. However, for this purpose, carefully designed self-healing and supply restoration control algorithm, protection systems and communication infrastructure are required at the network and MG levels. In this study, first, a hierarchical control structure is discussed for interconnecting the neighbour autonomous MGs where the introduced primary control level is the main focus of this study. Through the developed primary control level, this study demonstrates how the parallel DERs in the system of multiple interconnected autonomous MGs can properly share the load of the system. This controller is designed such that the converter-interfaced DERs operate in a voltage-controlled mode following a decentralised power sharing algorithm based on droop control. DER converters are controlled based on a per-phase technique instead of a conventional direct-quadratic transformation technique. In addition, linear quadratic regulator-based state feedback controllers, which are more stable than conventional proportional integrator controllers, are utilised to prevent instability and weak dynamic performances of the DERs when autonomous MGs are interconnected. The efficacy of the primary control level of the DERs in the system of multiple interconnected autonomous MGs is validated through the PSCAD/EMTDC simulations considering detailed dynamic models of DERs and converters.
Resumo:
In order to minimize the number of load shedding in a Microgrid during autonomous operation, islanded neighbour microgrids can be interconnected if they are on a self-healing network and an extra generation capacity is available in Distributed Energy Resources (DER) in one of the microgrids. In this way, the total load in the system of interconnected microgrids can be shared by all the DERs within these microgrids. However, for this purpose, carefully designed self-healing and supply restoration control algorithm, protection systems and communication infrastructure are required at the network and microgrid levels. In this chapter, first a hierarchical control structure is discussed for interconnecting the neighbour autonomous microgrids where the introduced primary control level is the main focus. Through the developed primary control level, it demonstrates how the parallel DERs in the system of multiple interconnected autonomous microgrids can properly share the load in the system. This controller is designed such that the converter-interfaced DERs operate in a voltage-controlled mode following a decentralized power sharing algorithm based on droop control. The switching in the converters is controlled using a linear quadratic regulator based state feedback which is more stable than conventional proportional integrator controllers and this prevents instability among parallel DERs when two microgrids are interconnected. The efficacy of the primary control level of DERs in the system of multiple interconnected autonomous microgrids is validated through simulations considering detailed dynamic models of DERs and converters.
Resumo:
This paper details the initial design and planning of a Field Programmable Gate Array (FPGA) implemented control system that will enable a path planner to interact with a MAVLink based flight computer. The design is aimed at small Unmanned Aircraft Vehicles (UAV) under autonomous operation which are typically subject to constraints arising from limited on-board processing capabilities, power and size. An FPGA implementation for the de- sign is chosen for its potential to address such limitations through low power and high speed in-hardware computation. The MAVLink protocol offers a low bandwidth interface for the FPGA implemented path planner to communicate with an on-board flight computer. A control system plan is presented that is capable of accepting a string of GPS waypoints generated on-board from a previously developed in- hardware Genetic Algorithm (GA) path planner and feeding them to the open source PX4 autopilot, while simultaneously respond- ing with flight status information.
Resumo:
This paper reports work on the automation of a hot metal carrier, which is a 20 tonne forklift-type vehicle used to move molten metal in aluminium smelters. To achieve efficient vehicle operation, issues of autonomous navigation and materials handling must be addressed. We present our complete system and experiments demonstrating reliable operation. One of the most significant experiments was five-hours of continuous operation where the vehicle travelled over 8 km and conducted 60 load handling operations. Finally, an experiment where the vehicle and autonomous operation were supervised from the other side of the world via a satellite phone network are described.
Resumo:
This paper reports work involved with the automation of a Hot Metal Carrier — a 20 tonne forklift-type vehicle used to move molten metal in aluminium smelters. To achieve efficient vehicle operation, issues of autonomous navigation and materials handling must be addressed. We present our complete system and experiments demontrating reliable operation. One of the most significant experiments was five-hours of continuous operation where the vehicle travelled over 8 km and conducted 60 load handling operations. We also describe an experiment where the vehicle and autonomous operation were supervised from the other side of the world via a satellite phone network.
Resumo:
This paper describes protection and control of a microgrid with converter interfaced micro sources. The proposed protection and control scheme consider both grid connected and autonomous operation of the microgrid. A protection scheme, capable of detecting faults effectively in both grid connected and islanded operations is proposed. The main challenge of the protection, due to current limiting state of the converters is overcome by using admittance relays. The relays operate according to the inverse time characteristic based on measured admittance of the line. The proposed scheme isolates the fault from both sides, while downstream side of the microgrid operates in islanding condition. Moreover faults can be detected in autonomous operation. In grid connected mode distributed generators (DG) supply the rated power while in absence of the grid, DGs share the entire power requirement proportional to rating based on output voltage angle droop control. The protection scheme ensures minimum load shedding with isolating the faulted network and DG control provides a smooth islanding and resynchronization operation. The efficacy of coordinated control and protection scheme has been validated through simulation for various operating conditions.
Automation of an underground mining vehicle using reactive navigation and opportunistic localization
Resumo:
This paper describes the implementation of an autonomous navigation system onto a 30 tonne Load-Haul-Dump truck. The control architecture is based on a robust reactive wall-following behaviour. To make it purposeful we provide driving hints derived from an approximate nodal-map. For most of the time, the vehicle is driven with weak localization (odometry). This need only be improved at intersections where decisions must be made - a technique we refer to as opportunistic localization. The truck has achieved full-speed autonomous operation at an artificial test mine, and subsequently, at a operational underground mine.
Resumo:
Draglines are massive machines commonly used in surface mining to strip overburden, revealing the targeted minerals for extraction. Automating some or all of the phases of operation of these machines offers the potential for significant productivity and maintenance benefits. The mining industry has a history of slow uptake of automation systems due to the challenges contained in the harsh, complex, three-dimensional (3D), dynamically changing mine operating environment. Robotics as a discipline is finally starting to gain acceptance as a technology with the potential to assist mining operations. This article examines the evolution of robotic technologies applied to draglines in the form of machine embedded intelligent systems. Results from this work include a production trial in which 250,000 tons of material was moved autonomously, experiments demonstrating steps towards full autonomy, and teleexcavation experiments in which a dragline in Australia was tasked by an operator in the United States.
Resumo:
It is well recognized that many scientifically interesting sites on Mars are located in rough terrains. Therefore, to enable safe autonomous operation of a planetary rover during exploration, the ability to accurately estimate terrain traversability is critical. In particular, this estimate needs to account for terrain deformation, which significantly affects the vehicle attitude and configuration. This paper presents an approach to estimate vehicle configuration, as a measure of traversability, in deformable terrain by learning the correlation between exteroceptive and proprioceptive information in experiments. We first perform traversability estimation with rigid terrain assumptions, then correlate the output with experienced vehicle configuration and terrain deformation using a multi-task Gaussian Process (GP) framework. Experimental validation of the proposed approach was performed on a prototype planetary rover and the vehicle attitude and configuration estimate was compared with state-of-the-art techniques. We demonstrate the ability of the approach to accurately estimate traversability with uncertainty in deformable terrain.
Resumo:
利用ROV代替潜水员进行潜艇供排气管对接作业是援潜救生的发展趋势,其中供排气管对接技术是为失事艇员提供生命保障的关键技术。由于水下作业环境比较复杂以及水下作业难度大等特点,人工遥控ROV进行援潜对接供排空气管作业过程中,还停留在只是能够打开潜艇供排气系统花甲板盖的工作上,还没有实现对类似接通供排空气管精确作业的工作。受到海流、风浪、失事潜艇周围较大涡流、供排气管的拖曳阻力、水下可视条件以及高精度定位等因素的限制,作业任务越复杂,要求ROV系统上机械手精确定位精度越高,操纵的难度也越大,由人工操作很难实现。在现有ROV人工操作的基础上,使ROV系统具有自主作业功能,更能发挥其在对接空气管作业中的能力,提高作业效率,缩短救援时间,因此本文在现有ROV基础上扩展预编程自主控制驾驶功能模块即ROV-A系统,借助预编程技术ROV-A系统在对接空气管作业中的一些特殊任务时能够实现自主作业功能。 本文结合中国科学院沈阳自动化研究所水下机器人中心未来援潜救生关键技术研究内容,针对为失事潜艇接通空气管作业中的一些关键技术,开展基于具有自主作业能力的ROV-A系统自主作业方法研究,深入研究了具有自主作业能力ROV-A系统的运动规划与协调控制技术以及水下作业力控制技术,以实现高精度的机械手末端位置控制与期望力跟踪;针对潜艇供排气系统的已知结构研究了水下目标定位技术,为对接空气管的特定需求发展具有自主作业能力的水下作业技术提供理论依据。重点研究针对系统特点的运动规划与多性能指标实现归一化问题;研究基于系统动力学模型误差的系统位姿控制问题;研究基于阻抗力控制水下作业目标定位问题;在系统运动规划与控制研究的基础上,研究能实现机械手末端精确轨迹跟踪的控制策略问题以及力控制问题。本论文研究内容如下: (1)根据ROV-A系统特点,从描述系统的空间位置和姿态着手,研究了ROV-A系统的空间运动学与基于Kane方法的动力学,得出载体基座自由运动模式的系统空间运动数学模型,为论文后续研究工作奠定了基础。 (2)针对对接空气管作业中的一些高精度和复杂的作业,研究了系统作业时的运动规划问题。针对系统运动学冗余、作业规划约束性能指标多,例如机械手可操作性,关节限制,载体的姿态,避障等等,结合梯度投影法和最小范数伪逆矩阵法以及任务优先逆运动学方法,引入模糊控制技术,将模糊控制的定性知识表达与任务优先逆运动学算法相结合,以水下作业末端位置控制及轨迹跟踪为前提,对系统运动分配、关节限位、避免奇异有无海流下的系统性能优化等运动规划进行了研究,仿真证明运动规划算法的有效性。 (3)研究了基于动力学模型的系统基本控制问题。针对系统动力学模型的复杂性和不精确性,在基于载体输出反馈控制的基础上,设计了基于输出反馈自适应控制算法,通过自适应学习的方式直接逼近系统动力学方程状态量之间的非线性关系,在外界不停扰动下逐渐提高系统的控制精度;基于Lyapunov稳定性理论,证明了存在外界干扰和自适应逼近误差条件下ROV-A系统控制器的闭环稳定性;通过仿真实验验证控制系统的有效性,为系统的控制提供了一种新思路。同时在基于位置运动控制的基础上引入了力控制,通过对常规PID外环力控制器基础上的改进,在系统离线规划的前提下实现力与位置控制的解耦,通过仿真验证期望力的稳定跟踪。 (4)研究了基于ROV-A系统阻抗力控制的水下矩形围壁环境约束的位置定位方法。通过在对具有先验知识的矩形围壁环境约束的学习理解基础上,应用外部阻抗力控制环包容内部位置运动控制环的控制策略。利用力传感器的反馈信息变化确定系统末端执行器与约束环境的接触特征点,根据环境的先验知识推理出环境定位信息。通过计算机仿真实验验证了水下具有先验知识环境的定位方法和ROV-A系统的控制策略的有效性。仿真结果证明定位方法和控制策略是可行的。 (5)结合系统控制,分析了系统在为失事潜艇对接空气管作业中的恒定和时变两种期望力输入作业模式,提出了基于在线运动规划下外部力控制环包容内部位置环控制方法,利用ROV-A系统完成了为失事潜艇自主对接空气管中两个典型作业。介绍了整个控制方法的组成和执行过程,分析了综合控制策略,最后通过仿真实验分析了综合力控制方法的性能,包括恒力和时变期望力输入进行了深入研究。
Resumo:
© 2005-2012 IEEE.Within industrial automation systems, three-dimensional (3-D) vision provides very useful feedback information in autonomous operation of various manufacturing equipment (e.g., industrial robots, material handling devices, assembly systems, and machine tools). The hardware performance in contemporary 3-D scanning devices is suitable for online utilization. However, the bottleneck is the lack of real-time algorithms for recognition of geometric primitives (e.g., planes and natural quadrics) from a scanned point cloud. One of the most important and the most frequent geometric primitive in various engineering tasks is plane. In this paper, we propose a new fast one-pass algorithm for recognition (segmentation and fitting) of planar segments from a point cloud. To effectively segment planar regions, we exploit the orthonormality of certain wavelets to polynomial function, as well as their sensitivity to abrupt changes. After segmentation of planar regions, we estimate the parameters of corresponding planes using standard fitting procedures. For point cloud structuring, a z-buffer algorithm with mesh triangles representation in barycentric coordinates is employed. The proposed recognition method is tested and experimentally validated in several real-world case studies.
Resumo:
Aquesta tesi tracta sobre el problema de la navegació per a vehicles submarins autònoms que operen en entorns artificials estructurats com ara ports, canals, plataformes marines i altres escenaris similars. A partir d'una estimació precisa de la posició en aquests entorns, les capacitats dels vehicles submarins s'incrementen notablement i s'obre una porta al seu funcionament autònom. El manteniment, inspecció i vigilància d'instal lacions marines són alguns exemples de possibles aplicacions. Les principals contribucions d'aquesta tesi consisteixen per una banda en el desenvolupament de diferents sistemes de localització per a aquelles situacions on es disposa d'un mapa previ de l'entorn i per l'altra en el desenvolupament d'una nova solució al problema de la Localització i Construcció Simultània de Mapes (SLAM en les seves sigles en anglès), la finalitat del qual és fer que un vehicle autònom creï un mapa de l'entorn desconegut que el rodeja i, al mateix temps, utilitzi aquest mapa per a determinar la seva pròpia posició. S'ha escollit un sonar d'imatges d'escaneig mecànic com a sensor principal per a aquest treball tant pel seu relatiu baix cost com per la seva capacitat per produir una representació detallada de l'entorn. Per altra banda, les particularitats de la seva operació i, especialment, la baixa freqúència a la que es produeixen les mesures, constitueixen els principals inconvenients que s'han hagut d'abordar en les estratègies de localització proposades. Les solucions adoptades per aquests problemes constitueixen una altra contribució d'aquesta tesi. El desenvolupament de vehicles autònoms i el seu ús com a plataformes experimentals és un altre aspecte important d'aquest treball. Experiments portats a terme tant en el laboratori com en escenaris reals d'aplicació han proporcionat les dades necessàries per a provar i avaluar els diferents sistemes de localització proposats.