992 resultados para automated modeling


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This report describes MM, a computer program that can model a variety of mechanical and fluid systems. Given a system's structure and qualitative behavior, MM searches for models using an energy-based modeling framework. MM uses general facts about physical systems to relate behavioral and model properties. These facts enable a more focussed search for models than would be obtained by mere comparison of desired and predicted behaviors. When these facts do not apply, MM uses behavior-constrained qualitative simulation to verify candidate models efficiently. MM can also design experiments to distinguish among multiple candidate models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The VLT-FLAMES Tarantula Survey (VFTS) has secured mid-resolution spectra of over 300 O-type stars in the 30 Doradus region of the Large Magellanic Cloud. A homogeneous analysis of such a large sample requires automated techniques, an approach that will also be needed for the upcoming analysis of the Gaia surveys of the Northern and Southern Hemisphere supplementing the Gaia measurements. We point out the importance of Gaia for the study of O stars, summarize the O star science case of VFTS and present a test of the automated modeling technique using synthetically generated data. This method employs a genetic algorithm based optimization technique in combination with fastwind model atmospheres. The method is found to be robust and able to recover the main photospheric parameters accurately. Precise wind parameters can be obtained as well, however, as expected, for dwarf stars the rate of acceleration of the ow is poorly constrained.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dinoflagellates possess large genomes in which most genes are present in many copies. This has made studies of their genomic organization and phylogenetics challenging. Recent advances in sequencing technology have made deep sequencing of dinoflagellate transcriptomes feasible. This dissertation investigates the genomic organization of dinoflagellates to better understand the challenges of assembling dinoflagellate transcriptomic and genomic data from short read sequencing methods, and develops new techniques that utilize deep sequencing data to identify orthologous genes across a diverse set of taxa. To better understand the genomic organization of dinoflagellates, a genomic cosmid clone of the tandemly repeated gene Alchohol Dehydrogenase (AHD) was sequenced and analyzed. The organization of this clone was found to be counter to prevailing hypotheses of genomic organization in dinoflagellates. Further, a new non-canonical splicing motif was described that could greatly improve the automated modeling and annotation of genomic data. A custom phylogenetic marker discovery pipeline, incorporating methods that leverage the statistical power of large data sets was written. A case study on Stramenopiles was undertaken to test the utility in resolving relationships between known groups as well as the phylogenetic affinity of seven unknown taxa. The pipeline generated a set of 373 genes useful as phylogenetic markers that successfully resolved relationships among the major groups of Stramenopiles, and placed all unknown taxa on the tree with strong bootstrap support. This pipeline was then used to discover 668 genes useful as phylogenetic markers in dinoflagellates. Phylogenetic analysis of 58 dinoflagellates, using this set of markers, produced a phylogeny with good support of all branches. The Suessiales were found to be sister to the Peridinales. The Prorocentrales formed a monophyletic group with the Dinophysiales that was sister to the Gonyaulacales. The Gymnodinales was found to be paraphyletic, forming three monophyletic groups. While this pipeline was used to find phylogenetic markers, it will likely also be useful for finding orthologs of interest for other purposes, for the discovery of horizontally transferred genes, and for the separation of sequences in metagenomic data sets.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Parmodel is a web server for automated comparative modeling and evaluation of protein structures. The aim of this tool is to help inexperienced users to perform modeling, assessment, visualization, and optimization of protein models as well as crystallographers to evaluate structures solved experimentally. It is subdivided in four modules: Parmodel Modeling, Parmodel Assessment, Parmodel Visualization, and Parmodel Optimization. The main module is the Parmodel Modeling that allows the building of several models ford a same protein in a reduced time, through the distribution of modeling processes on a Beowulf cluster. Parmodel automates and integrates the main softwares used in comparative modeling as MODELLER, Whatcheck, Procheck, Raster3D, Molscript, and Gromacs. This web server is freely accessible at http://www.biocristalografia.df.ibilce.unesp.br/tools/parmodel. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Object identification and tracking have become critical for automated on-site construction safety assessment. The primary objective of this paper is to present the development of a testbed to analyze the impact of object identification and tracking errors caused by data collection devices and algorithms used for safety assessment. The testbed models workspaces for earthmoving operations and simulates safety-related violations, including speed limit violations, access violations to dangerous areas, and close proximity violations between heavy machinery. Three different cases were analyzed based on actual earthmoving operations conducted at a limestone quarry. Using the testbed, the impacts of device and algorithm errors were investigated for safety planning purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conceptual modeling continues to be an important means for graphically capturing the requirements of an information system. Observations of modeling practice suggest that modelers often use multiple modeling grammars in combination to articulate various aspects of real-world domains. We extend an ontological theory of representation to suggest why and how users employ multiple conceptual modeling grammars in combination. We provide an empirical test of the extended theory using survey data and structured interviews about the use of traditional and structured analysis grammars within an automated tool environment. We find that users of the analyzed tool combine grammars to overcome the ontological incompleteness that exists in each grammar. Users further selected their starting grammar from a predicted subset of grammars only. The qualitative data provides insights as to why some of the predicted deficiencies manifest in practice differently than predicted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the era of Web 2.0, huge volumes of consumer reviews are posted to the Internet every day. Manual approaches to detecting and analyzing fake reviews (i.e., spam) are not practical due to the problem of information overload. However, the design and development of automated methods of detecting fake reviews is a challenging research problem. The main reason is that fake reviews are specifically composed to mislead readers, so they may appear the same as legitimate reviews (i.e., ham). As a result, discriminatory features that would enable individual reviews to be classified as spam or ham may not be available. Guided by the design science research methodology, the main contribution of this study is the design and instantiation of novel computational models for detecting fake reviews. In particular, a novel text mining model is developed and integrated into a semantic language model for the detection of untruthful reviews. The models are then evaluated based on a real-world dataset collected from amazon.com. The results of our experiments confirm that the proposed models outperform other well-known baseline models in detecting fake reviews. To the best of our knowledge, the work discussed in this article represents the first successful attempt to apply text mining methods and semantic language models to the detection of fake consumer reviews. A managerial implication of our research is that firms can apply our design artifacts to monitor online consumer reviews to develop effective marketing or product design strategies based on genuine consumer feedback posted to the Internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Existing techniques for automated discovery of process models from event logs gen- erally produce flat process models. Thus, they fail to exploit the notion of subprocess as well as error handling and repetition constructs provided by contemporary process modeling notations, such as the Business Process Model and Notation (BPMN). This paper presents a technique for automated discovery of hierarchical BPMN models con- taining interrupting and non-interrupting boundary events and activity markers. The technique employs functional and inclusion dependency discovery techniques in order to elicit a process-subprocess hierarchy from the event log. Given this hierarchy and the projected logs associated to each node in the hierarchy, parent process and subprocess models are then discovered using existing techniques for flat process model discovery. Finally, the resulting models and logs are heuristically analyzed in order to identify boundary events and markers. By employing approximate dependency discovery tech- niques, it is possible to filter out noise in the event log arising for example from data entry errors or missing events. A validation with one synthetic and two real-life logs shows that process models derived by the proposed technique are more accurate and less complex than those derived with flat process discovery techniques. Meanwhile, a validation on a family of synthetically generated logs shows that the technique is resilient to varying levels of noise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite substantial progress in measuring the 3D profile of anatomical variations in the human brain, their genetic and environmental causes remain enigmatic. We developed an automated system to identify and map genetic and environmental effects on brain structure in large brain MRI databases . We applied our multi-template segmentation approach ("Multi-Atlas Fluid Image Alignment") to fluidly propagate hand-labeled parameterized surface meshes into 116 scans of twins (60 identical, 56 fraternal), labeling the lateral ventricles. Mesh surfaces were averaged within subjects to minimize segmentation error. We fitted quantitative genetic models at each of 30,000 surface points to measure the proportion of shape variance attributable to (1) genetic differences among subjects, (2) environmental influences unique to each individual, and (3) shared environmental effects. Surface-based statistical maps revealed 3D heritability patterns, and their significance, with and without adjustments for global brain scale. These maps visualized detailed profiles of environmental versus genetic influences on the brain, extending genetic models to spatially detailed, automatically computed, 3D maps.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper highlights the Hybrid agent construction model being developed that allows the description and development of autonomous agents in SAGE (Scalable, fault Tolerant Agent Grooming Environment) - a second generation FIPA-Compliant Multi-Agent system. We aim to provide the programmer with a generic and well defined agent architecture enabling the development of sophisticated agents on SAGE, possessing the desired properties of autonomous agents - reactivity, pro-activity, social ability and knowledge based reasoning. © Springer-Verlag Berlin Heidelberg 2005.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of integrating computational mechanics (FEA and CFD) and optimization tools is to speed up dramatically the design process in different application areas concerning reliability in electronic packaging. Design engineers in the electronics manufacturing sector may use these tools to predict key design parameters and configurations (i.e. material properties, product dimensions, design at PCB level. etc) that will guarantee the required product performance. In this paper a modeling strategy coupling computational mechanics techniques with numerical optimization is presented and demonstrated with two problems. The integrated modeling framework is obtained by coupling the multi-physics analysis tool PHYSICA - with the numerical optimization package - Visua/DOC into a fuJly automated design tool for applications in electronic packaging. Thermo-mechanical simulations of solder creep deformations are presented to predict flip-chip reliability and life-time under thermal cycling. Also a thermal management design based on multi-physics analysis with coupled thermal-flow-stress modeling is discussed. The Response Surface Modeling Approach in conjunction with Design of Experiments statistical tools is demonstrated and used subsequently by the numerical optimization techniques as a part of this modeling framework. Predictions for reliable electronic assemblies are achieved in an efficient and systematic manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Architects use cycle-by-cycle simulation to evaluate design choices and understand tradeoffs and interactions among design parameters. Efficiently exploring exponential-size design spaces with many interacting parameters remains an open problem: the sheer number of experiments renders detailed simulation intractable. We attack this problem via an automated approach that builds accurate, confident predictive design-space models. We simulate sampled points, using the results to teach our models the function describing relationships among design parameters. The models produce highly accurate performance estimates for other points in the space, can be queried to predict performance impacts of architectural changes, and are very fast compared to simulation, enabling efficient discovery of tradeoffs among parameters in different regions. We validate our approach via sensitivity studies on memory hierarchy and CPU design spaces: our models generally predict IPC with only 1-2% error and reduce required simulation by two orders of magnitude. We also show the efficacy of our technique for exploring chip multiprocessor (CMP) design spaces: when trained on a 1% sample drawn from a CMP design space with 250K points and up to 55x performance swings among different system configurations, our models predict performance with only 4-5% error on average. Our approach combines with techniques to reduce time per simulation, achieving net time savings of three-four orders of magnitude. Copyright © 2006 ACM.