23 resultados para autocatalysis
Resumo:
We studied the open circuit interaction of methanol and ethanol with oxidized platinum electrodes using in situ infrared spectroscopy. For methanol, it was found that formic acid is the main species formed in the initial region of the transient and that the steep decrease of the open circuit potential coincides with an explosive increase in the CO(2) production, which is followed by an increase in the coverage of adsorbed CO. For ethanol, acetaldehyde was the main product detected and only traces of dissolved CO(2) and adsorbed CO were found after the steep potential decay. In both cases, the transients were interpreted in terms of (a) the emergence of sub-surface oxygen in the beginning of the transient, where the oxide content is high, and (b) the autocatalytic production of free platinum sites for lower oxide content during the steep decay of the open circuit potential.
Resumo:
The emergence of chirality in enantioselective autocatalysis for compounds unable to transform according to the Frank-like reaction network is discussed with respect to the controversial limited enantioselectivity (LES) model composed of coupled enantioselective and non-enantioselective autocatalyses. The LES model cannot lead to spontaneous mirror symmetry breaking (SMSB) either in closed systems with a homogeneous temperature distribution or in closed systems with a stationary non-uniform temperature distribution. However, simulations of chemical kinetics in a two-compartment model demonstrate that SMSB may occur if both autocatalytic reactions are spatially separated at different temperatures in different compartments but coupled under the action of a continuous internal flow. In such conditions, the system can evolve, for certain reaction and system parameters, toward a chiral stationary state; that is, the system is able to reach a bifurcation point leading to SMSB. Numerical simulations in which reasonable chemical parameters have been used suggest that an ade- quate scenario for such a SMSB would be that of abyssal hydrothermal vents, by virtue of the typical temper- ature gradients found there and the role of inorganic solids mediating chemical reactions in an enzyme-like role. Key Words: Homochirality Prebiotic chemistry.
Resumo:
Previous studies (Stavroulakis and Sfakiotakis, 1993) have shown an inhibition of propylene-induced ethylene production in kiwifruit below a critical temperature range of 11-14.8 degrees C. The aim of this research was to identify the biochemical basis of this inhibition in kiwifruit below 11-14.8 degrees C. 'Hayward' kiwifruit were treated with increasing propylene concentrations at 10 and 20 degrees C. Ethylene biosynthesis pathways and fruit ripening were investigated. Kiwifruit at 20 degrees C in air started autocatalysis of ethylene production and ripened after 19 d with a concomitant increase in respiration. Ethylene production and the respiration rise appeared earlier with increased propylene concentrations. Ripening proceeded immediately after propylene treatment, while ethylene autocatalysis needed a lag period of 24-72 h. The latter event was attributed to the delay found in the induction of 1-aminocyclopropane-1-carboxylate synthase (ACC synthase) activity and consequently to the delayed increase of l-aminocyclopropane l-carboxylic acid (ACC) content. In contrast propylene treatment induced 1-aminocyclopropane-1-carboxylate oxidase (ACC oxidase) activity with no lag period. Moreover, transcription of ACC synthase and ACC oxidase genes was active only in ethylene-producing kiwifruit at 20 degrees C. In contrast, treatment at 10 degrees C with propylene strongly inhibited ethylene production, which was attributed to the low activities of both ACC synthase and ACC oxidase as well as the low initial ACC level. Interestingly, fruit treated with propylene at 10 degrees C appeared to be able to transcribe the ACC oxidase but not the ACC synthase gene. However, propylene induced ripening of that fruit almost as rapidly as in the propylene-treated fruit at 20 degrees C. Respiration rate was increased together with propylene concentration. It is concluded that kiwifruit stored at 20 degrees C behaves as a typical climacteric fruit, while at 10 degrees C behaves like a non-climacteric fruit. We propose that the main reasons for the inhibition of the propylene induced (autocatalytic) ethylene production in kiwifruit at low temperature (less than or equal to 10 degrees C), are primarily the suppression of the propylene-induced ACC synthase gene expression and the possible post-transcriptional modification of ACC oxidase.
Resumo:
Previous studies (Stavroulakis and Sfakiotakis, 1993) have shown an inhibition of propylene-induced ethylene production in kiwifruit below a critical temperature range of 11-14.8 degrees C. The aim of this research was to identify the biochemical basis of this inhibition in kiwifruit below 11-14.8 degrees C. 'Hayward' kiwifruit were treated with increasing propylene concentrations at 10 and 20 degrees C. Ethylene biosynthesis pathways and fruit ripening were investigated. Kiwifruit at 20 degrees C in air started autocatalysis of ethylene production and ripened after 19 d with a concomitant increase in respiration. Ethylene production and the respiration rise appeared earlier with increased propylene concentrations. Ripening proceeded immediately after propylene treatment, while ethylene autocatalysis needed a lag period of 24-72 h. The latter event was attributed to the delay found in the induction of 1-aminocyclopropane-1-carboxylate synthase (ACC synthase) activity and consequently to the delayed increase of l-aminocyclopropane l-carboxylic acid (ACC) content. In contrast propylene treatment induced 1-aminocyclopropane-1-carboxylate oxidase (ACC oxidase) activity with no lag period. Moreover, transcription of ACC synthase and ACC oxidase genes was active only in ethylene-producing kiwifruit at 20 degrees C. In contrast, treatment at 10 degrees C with propylene strongly inhibited ethylene production, which was attributed to the low activities of both ACC synthase and ACC oxidase as well as the low initial ACC level. Interestingly, fruit treated with propylene at 10 degrees C appeared to be able to transcribe the ACC oxidase but not the ACC synthase gene. However, propylene induced ripening of that fruit almost as rapidly as in the propylene-treated fruit at 20 degrees C. Respiration rate was increased together with propylene concentration. It is concluded that kiwifruit stored at 20 degrees C behaves as a typical climacteric fruit, while at 10 degrees C behaves like a non-climacteric fruit. We propose that the main reasons for the inhibition of the propylene induced (autocatalytic) ethylene production in kiwifruit at low temperature (less than or equal to 10 degrees C), are primarily the suppression of the propylene-induced ACC synthase gene expression and the possible post-transcriptional modification of ACC oxidase.
Resumo:
While interleukin (IL)-1β plays an important role in combating the invading pathogen as part of the innate immune response, its dysregulation is responsible for a number of autoinflammatory disorders. Large IL-1β activating platforms, known as inflammasomes, can assemble in response to the detection of endogenous host and pathogen-associated danger molecules. Formation of these protein complexes results in the autocatalysis and activation of caspase-1, which processes precursor IL-1β into its secreted biologically active form. Inflammasome and IL-1β activity is required to efficiently control viral, bacterial and fungal pathogen infections. Conversely, excess IL-1β activity contributes to human disease, and its inhibition has proved therapeutically beneficial in the treatment of a spectrum of serious, yet relatively rare, heritable inflammasomopathies. Recently, inflammasome function has been implicated in more common human conditions, such as gout, type II diabetes and cancer. This raises the possibility that anti-IL-1 therapeutics may have broader applications than anticipated previously, and may be utilized across diverse disease states that are linked insidiously through unwanted or heightened inflammasome activity.
Resumo:
The emergence of chirality in enantioselective autocatalysis for compounds unable to transform according to the Frank-like reaction network is discussed with respect to the controversial limited enantioselectivity (LES) model composed of coupled enantioselective and non-enantioselective autocatalyses. The LES model cannot lead to spontaneous mirror symmetry breaking (SMSB) either in closed systems with a homogeneous temperature distribution or in closed systems with a stationary non-uniform temperature distribution. However, simulations of chemical kinetics in a two-compartment model demonstrate that SMSB may occur if both autocatalytic reactions are spatially separated at different temperatures in different compartments but coupled under the action of a continuous internal flow. In such conditions, the system can evolve, for certain reaction and system parameters, toward a chiral stationary state; that is, the system is able to reach a bifurcation point leading to SMSB. Numerical simulations in which reasonable chemical parameters have been used suggest that an adequate scenario for such a SMSB would be that of abyssal hydrothermal vents, by virtue of the typical temperature gradients found there and the role of inorganic solids mediating chemical reactions in an enzyme-like role.
Resumo:
Concentration gradients provide spatial information for tissue patterning and cell organization, and their robustness under natural fluctuations is an evolutionary advantage. In rod-shaped Schizosaccharomyces pombe cells, the DYRK-family kinase Pom1 gradients control cell division timing and placement. Upon dephosphorylation by a Tea4-phosphatase complex, Pom1 associates with the plasma membrane at cell poles, where it diffuses and detaches upon auto-phosphorylation. Here, we demonstrate that Pom1 auto-phosphorylates intermolecularly, both in vitro and in vivo, which confers robustness to the gradient. Quantitative imaging reveals this robustness through two system's properties: The Pom1 gradient amplitude is inversely correlated with its decay length and is buffered against fluctuations in Tea4 levels. A theoretical model of Pom1 gradient formation through intermolecular auto-phosphorylation predicts both properties qualitatively and quantitatively. This provides a telling example where gradient robustness through super-linear decay, a principle hypothesized a decade ago, is achieved through autocatalysis. Concentration-dependent autocatalysis may be a widely used simple feedback to buffer biological activities.
Resumo:
The fact that biologically relevant molecules exist only as one of the two enantiomers is a fascinating example of complete symmetry breaking of chirality and has long intrigued our curiosity. The origin of this selective chirality has remained a fundamental enigma with regard to the origin of life since the time of Pasteur, 160 years ago. The symmetry breaking processes, which include autocatalytic crystallization, asymmetric autocatalysis, spontaneous crystallization, adsorption and polymerization of amino acids on mineral surfaces, provide new insights into the origin of biomolecular homochirality.
Resumo:
The spontaneous assembly of a peptide bolaamphiphile in water, namely, RFL4FR (R, arginine; F, phenylalanine; L, leucine) is investigated, along with its novel properties in surface modification and usage as substrates for cell culture. RFL4FR self-assembles into nanosheets through lateral association of the peptide backbone. The L4 sequence is located within the core of the nanosheets, whereas the R moieties are exposed to the water at the surface of the nanosheets. Kinetic assays indicate that the self-assembly is driven by a remarkable two-step process, where a nucleation phase is followed by fast growth of nanosheets with an autocatalysis process. The internal structure of the nanosheets is formed from ultrathin bolaamphiphile monolayers with a crystalline orthorhombic symmetry with cross-β organization. We show that human corneal stromal fibroblast (hCSF) cells can grow on polystyrene films coated with films dried from RFL4FR solutions. For the first time, this type of amphiphilic peptide is used as a substrate to modulate the wettability of solid surfaces for cell culture applications.
Resumo:
The hydrolysis reaction mechanism of phosphite antioxidants is investigated by liquid chromatography-mass spectrometry (LC/MS). The phosphites were chosen because they differed in chemical structure and phosphorus content. Dopant assisted-atmospheric pressure photoionization (DA-APPI) is chosen as the ion source for (lie ionization of the compounds. [it our previous work, DA-APPI was shown to offer an attractive alternative to atmospheric pressure chemical ionization (APCI) since it provided background-ion free mass spectra and higher sensitivity [M. Papanastasiou, et al., Polymer Degradation and Stability 91 (11) (2006) 2675-2682]. In positive ion mode, the molecules are generally detected in their protonated form. In negative ion mode, the phosphites are unstable and only fragment ions are observed: these however, are characteristic of each phosphite and may be used for the identification of the analytes in complex mixtures. The analytes under investigation are exposed to accelerated humid ageing conditions and their hydrolytic pathway and stability is investigated. Different substituents around the phosphorus atom are shown to have a significant effect on the stability of the phosphites, with phenol substituents producing very hydrolytically stable structures. Alkanox P24 and PEP-36 follow a similar hydrolytic pathway via the scission of the first and then the second P-O-phenol bonds, eventually leading to the formation of phenol, Phosphorous acid and pentaerythritol as end products. HP-10 exhibits a rather different Structure and the products detected suggest scission of either the P-O-hydrocarbon or one of the P-O-phenol bonds. A phenomenon similar to that of autocatalysis is observed for all phosphites and is attributed to the formation of dialkyl phosphites as intermediate products. (C) 2008 Elsevier B.V. All rights reserved.