993 resultados para auditory-motor interaction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This project addresses methodological and technological challenges in the development of multi-modal data acquisition and analysis methods for the representation of instrumental playing technique in music performance through auditory-motor patterning models. The case study is violin playing: a multi-modal database of violin performances has been constructed by recording different musicians while playing short exercises on different violins. The exercise set and recording protocol have been designed to sample the space defined by dynamics (from piano to forte) and tone (from sul tasto to sul ponticello), for each bow stroke type being played on each of the four strings (three different pitches per string) at two different tempi. The data, containing audio, video, and motion capture streams, has been processed and segmented to facilitate upcoming analyses. From the acquired motion data, the positions of the instrument string ends and the bow hair ribbon ends are tracked and processed to obtain a number of bowing descriptors suited for a detailed description and analysis of the bow motion patterns taking place during performance. Likewise, a number of sound perceptual attributes are computed from the audio streams. Besides the methodology and the implementation of a number of data acquisition tools, this project introduces preliminary results from analyzing bowing technique on a multi-modal violin performance database that is unique in its class. A further contribution of this project is the data itself, which will be made available to the scientific community through the repovizz platform.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given that the auditory system is rather well developed at the end of the third trimester of pregnancy, it is likely that couplings between acoustics and motor activity can be integrated as early as at the beginning of postnatal life. The aim of the present mini-review was to summarize and discuss studies on early auditory-motor integration, focusing particularly on upper-limb movements (one of the most crucial means to interact with the environment) in association with auditory stimuli, to develop further understanding of their significance with regard to early infant development. Many studies have investigated the relationship between various infant behaviors (e.g., sucking, visual fixation, head turning) and auditory stimuli, and established that human infants can be observed displaying couplings between action and environmental sensory stimulation already from just after birth, clearly indicating a propensity for intentional behavior. Surprisingly few studies, however, have investigated the associations between upper-limb movements and different auditory stimuli in newborns and young infants, infants born at risk for developmental disorders/delays in particular. Findings from studies of early auditory-motor interaction support that the developing integration of sensory and motor systems is a fundamental part of the process guiding the development of goal-directed action in infancy, of great importance for continued motor, perceptual, and cognitive development. At-risk infants (e.g., those born preterm) may display increasing central auditory processing disorders, negatively affecting early sensorymotor integration, and resulting in long-term consequences on gesturing, language development, and social communication. Consequently, there is a need for more studies on such implications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The integration of the auditory modality in virtual reality environments is known to promote the sensations of immersion and presence. However it is also known from psychophysics studies that auditory-visual interaction obey to complex rules and that multisensory conflicts may disrupt the adhesion of the participant to the presented virtual scene. It is thus important to measure the accuracy of the auditory spatial cues reproduced by the auditory display and their consistency with the spatial visual cues. This study evaluates auditory localization performances under various unimodal and auditory-visual bimodal conditions in a virtual reality (VR) setup using a stereoscopic display and binaural reproduction over headphones in static conditions. The auditory localization performances observed in the present study are in line with those reported in real conditions, suggesting that VR gives rise to consistent auditory and visual spatial cues. These results validate the use of VR for future psychophysics experiments with auditory and visual stimuli. They also emphasize the importance of a spatially accurate auditory and visual rendering for VR setups.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This article is an edited transcription of a virtual symposium promoted by the Brazilian Society of Neuroscience and Behavior (SBNeC). Although the dynamics of sensory and motor representations have been one of the most studied features of the central nervous system, the actual mechanisms of brain plasticity that underlie the dynamic nature of sensory and motor maps are not entirely unraveled. Our discussion began with the notion that the processing of sensory information depends on many different cortical areas. Some of them are arranged topographically and others have non-topographic (analytical) properties. Besides a sensory component, every cortical area has an efferent output that can be mapped and can influence motor behavior. Although new behaviors might be related to modifications of the sensory or motor representations in a given cortical area, they can also be the result of the acquired ability to make new associations between specific sensory cues and certain movements, a type of learning known as conditioning motor learning. Many types of learning are directly related to the emotional or cognitive context in which a new behavior is acquired. This has been demonstrated by paradigms in which the receptive field properties of cortical neurons are modified when an animal is engaged in a given discrimination task or when a triggering feature is paired with an aversive stimulus. The role of the cholinergic input from the nucleus basalis to the neocortex was also highlighted as one important component of the circuits responsible for the context-dependent changes that can be induced in cortical maps.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Il est maintenant bien établi que le cerveau humain est doté d’un système de neurones qui s’active tant à la perception qu’à l’exécution d’une action. Les neurones miroirs, ainsi que le système qu’ils forment avec des structures adjacentes appelées système neurones miroirs (SNM), ont été relié à la compréhension d’action et pourrait être impliqué dans les fonctions sociales de haut niveau tel que l’empathie et l’imitation. Dans la foulée spéculative reliant le SNM à la sphère sociale, le dysfonctionnement de ce système a rapidement gagné intérêt dans la genèse des anomalies du domaine social chez les personnes présentant le Trouble du spectre de l’autisme (TSA). Néanmoins, l’hypothèse voulant que le dysfonctionnement social des TSA repose sur une atteinte du SNM est controversée. En effet, les études soutenant cette hypothèse nécessitent des fonctions cognitives et sociales qui peuvent contribuer à l’obtention de résultats atypiques, telles que la compréhension des consignes, l’attention sur des stimuli sociaux ou la réalisation d’acte moteur. Récemment, un protocole auditif de négativité de discordance (MMN) utilisant des stimuli reliés à l’action humaine a été utilisé pour mesurer l’activité du SNM. Cette technique semble prometteuse dans la mesure où elle ne nécessite pas de capacités attentionnelles ou langagières, elle est brève et demande un montage minimal d’électrodes. Le premier article avait comme objectif principal de mesurer la validité de convergence du protocole MMN relié à l’action avec celui du rythme mu, le protocole le plus utilisé pour enregistrer l’activité miroir à l’aide de l’électroencéphalographie (EEG). Les modes de stimulation ont été délivrées en bloc successif à un groupe de 12 adultes en santé. Alors que les deux techniques ont modulé efficacement les régions fronto-centrales et centrales respectivement, mais ne sont pas corrélées, nous avons conclu qu’il est possible 2 qu’elles mesurent des aspects différents du SNM. Le deuxième article avait comme objectif principal de mesurer l’activité du SNM à l’aide du protocole MMN relié à l’action chez 10 enfants présentant un TSA ainsi que chez 12 enfants neurotypiques dans la même tranche d’âge (5-7ans). Chez les enfants TSA, nous avons montré un patron de latence inversée, comparativement aux enfants du groupe contrôle; ils traitaient plus rapidement les sons contrôles que les sons reliés à l’action humaine, alors que la tendance inverse était observée chez les contrôles. De plus, bien que les deux groupes différaient quant aux sons d’action, ils ne différaient pas quant aux sons contrôles. Quant à l’amplitude, les enfants TSA se distinguaient du groupe contrôle par une amplitude restreinte du son d’action provenant de la bouche. Par ailleurs, les mesures neurophysiologiques et neuropsychologiques n’étaient pas corrélées. En sommes, basé sur la prémisse que ce protocole MMN pourrait mesurer l’activité du SNM, cette thèse a comme but d’améliorer les connaissances quant à son utilisation chez l’adulte et l’enfant neurotypique ainsi que chez l’enfant TSA. Celui-ci pourrait ultimement être utilisé comme un biomarqueur potentiel du TSA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Spatial independent component analysis (sICA) of functional magnetic resonance imaging (fMRI) time series can generate meaningful activation maps and associated descriptive signals, which are useful to evaluate datasets of the entire brain or selected portions of it. Besides computational implications, variations in the input dataset combined with the multivariate nature of ICA may lead to different spatial or temporal readouts of brain activation phenomena. By reducing and increasing a volume of interest (VOI), we applied sICA to different datasets from real activation experiments with multislice acquisition and single or multiple sensory-motor task-induced blood oxygenation level-dependent (BOLD) signal sources with different spatial and temporal structure. Using receiver operating characteristics (ROC) methodology for accuracy evaluation and multiple regression analysis as benchmark, we compared sICA decompositions of reduced and increased VOI fMRI time-series containing auditory, motor and hemifield visual activation occurring separately or simultaneously in time. Both approaches yielded valid results; however, the results of the increased VOI approach were spatially more accurate compared to the results of the decreased VOI approach. This is consistent with the capability of sICA to take advantage of extended samples of statistical observations and suggests that sICA is more powerful with extended rather than reduced VOI datasets to delineate brain activity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A high frequency physical phase variable electric machine model was developed using FE analysis. The model was implemented in a machine drive environment with hardware-in-the-loop. The novelty of the proposed model is that it is derived based on the actual geometrical and other physical information of the motor, considering each individual turn in the winding. This is the first attempt to develop such a model to obtain high frequency machine parameters without resorting to expensive experimental procedures currently in use. The model was used in a dynamic simulation environment to predict inverter-motor interaction. This includes motor terminal overvoltage, current spikes, as well as switching effects. In addition, a complete drive model was developed for electromagnetic interference (EMI) analysis and evaluation. This consists of the lumped parameter models of different system components, such as cable, inverter, and motor. The lumped parameter models enable faster simulations. The results obtained were verified by experimental measurements and excellent agreements were obtained. A change in the winding arrangement and its influence on the motor high frequency behavior has also been investigated. This was shown to have a little effect on the parameter values and in the motor high frequency behavior for equal number of turns. An accurate prediction of overvoltage and EMI in the design stages of the drive system would reduce the time required for the design modifications as well as for the evaluation of EMC compliance issues. The model can be utilized in the design optimization and insulation selection for motors. Use of this procedure could prove economical, as it would help designers develop and test new motor designs for the evaluation of operational impacts in various motor drive applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Given the polarity dependent effects of transcranial direct current stimulation (tDCS) in facilitating or inhibiting neuronal processing, and tDCS effects on pitch perception, we tested the effects of tDCS on temporal aspects of auditory processing. We aimed to change baseline activity of the auditory cortex using tDCS as to modulate temporal aspects of auditory processing in healthy subjects without hearing impairment. Eleven subjects received 2mA bilateral anodal, cathodal and sham tDCS over auditory cortex in a randomized and counterbalanced order. Subjects were evaluated by the Random Gap Detection Test (RGDT), a test measuring temporal processing abilities in the auditory domain, before and during the stimulation. Statistical analysis revealed a significant interaction effect of time vs. tDCS condition for 4000 Hz and for clicks. Post-hoc tests showed significant differences according to stimulation polarity on RGDT performance: anodal improved 22.5% and cathodal decreased 54.5% subjects' performance, as compared to baseline. For clicks, anodal also increased performance in 29.4% when compared to baseline. tDCS presented polarity-dependent effects on the activity of the auditory cortex, which results in a positive or negative impact in a temporal resolution task performance. These results encourage further studies exploring tDCS in central auditory processing disorders.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The progress of science in search of new techniques of the nerve regeneration and the functional repair in reinnervated muscle has been the target of many researchers around the world. Consequently, nerves and muscles in different body segments asked for more enlightenment of their morphology, their interrelation with other anatomic structures and their peculiarities. One of the most significant areas that need deeper studies is the region of the head and neck, since they are often affected by important pathologies. In order to offer the researcher`s community a morphological myoneural interaction model, this study elected the levator labii superioris muscle and its motor nerve, the buccal branch of the facial nerve (VII pair) not only for its special characteristics, but also its value on the facial expression. The rat was chosen for this investigation for being easy to obtain, to keep, to manipulate and to compare this experiment with many others studies previously published. The techniques used were Mesoscopic (dissection), histoenzymologic and morphometric ones. In the results the muscle proved to have a predominance of fast twich fibers (FG and FOG) and superficial location, with a proximal bone and a distal cutaneous insertion. Its motor nerve, the buccal branch of the facial nerve (VII pair), breaks through the muscle belly into its deep face, and comprised a heterogeneous group of myelinic nerve fibers disposed in a regular form in all fascicle. Near the motor point, the nerve showed to be composed of two fascicles with different sizes. Due to the small nerve dimensions, the nerve fibers have a smaller diameter if compared to the motor nerve of pectineus muscle of the cat. Further studies with neural tracers have already had a start in order to provide more information about the distribution and the architecture of these fibers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper discusses a study that collected cortical evoked responses when stimuli of different modalities were presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have adapted an actin-mosin motility assay to examine the interactions in vitro between actin cables isolated from the giant internodal cells of the freshwater alga, Nitella, and pigment granules extracted from red ovarian chromatophores of the freshwater palaemonid shrimp, Macrobrachium olfersi. The chromatophore pigment mass consists of large (0.5-1.0-mu m diameter) membrane-bounded granules, and small (140-nm diameter), a membranous granules, both structurally continuous with the abundant smooth endoplasmic reticulum. Our previous immunocytochemical studies show a myosin motor to be stably associated with the pigment mass; however, to which granule type or membrane the myosin motor is attached is unclear. Here, we show that sodium vanadate, a myosin ATPase inhibitor, markedly increases the affinity of isolated, large, membrane-bounded granules for Nitella actin cables to which they become permanently attached. This interaction does not occur in granule preparations containing ATP with uninhibited, active myosin without vanadate. We propose that a stable state of elevated affinity is established between the granule-located myosin motor and the Nitella actin cables, resulting from a vanadate-inhibited acto-myosin-ADP complex. This finding provides further evidence for a myosin motor positioned on the surface of the membrane-bounded pigment granules in shrimp ovarian chromatophores.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The inferior colliculus (IC) is primarily involved in the processing of acoustic stimuli, being in a position to send auditory information to motor centers that participate in behaviors such as prey catching and predators` avoidance The role of the central nucleus of the IC (CIC) on fear and anxiety has been suggested on the basis that rats are able to engage in tasks to decrease the aversiveness of CIC stimulation, increased Fos immunolabeling during diverse aversive states and increased CIC auditory evoked potentials (AEP) induced by conditioned fear stimuli Additionally it was shown that brainstem AEP, represented by wave V, for which the main generator is the IC, is increased during experimentally induced anxiety Rats segregated according to their low or high emotional reactivity have been used as an important tool in the study of fear and anxiety The IC contains a high density of GABA receptors Since the efficacy of an anxiolytic compound is a function of the animal`s anxiety level, it is possible that GABA-benzodiazepine (Bzp) agents affect LA and HA animals differently In this study we investigated the GABA-Bzp influence on the modulation of AEP in rats with low (LA) or high-anxiety (HA) levels, as assessed by the elevated plus maze test (EPM) GABA-Bzp modulation on the unconditioned AEP response was analyzed by using intra CIC injections (0 2 mu l) of the GABA-Bzp agonists muscimol (121 ng) and diazepam (30 mu g) or the GABA inhibitors bicuculline (10 ng) and semicarbazide (7 mu g) In a second experiment, we evaluate the effects of contextual aversive conditioning on AEP using foot shocks as unconditioned stimuli On the unconditioned fear paradigm GABA inhibition in creased AEP in LA rats and decreases this measure in HA counterparts Muscimol was effective in reducing AEP in both LA and HA rats Contextual fear stimuli increased the magnitude of AEP In spite of no effect obtained with diazepam in LA rats the drug inhibited AEP in HA animals The specificity of the regulatory mechanisms mediated by GABA Bzp for the ascending neurocircuits responsible for the acquisition of aversive information in LA and HA animals shed light on the processing of sensory information underlying the generation of defensive reactions (C) 2010 IBRO Published by Elsevier Ltd All rights reserved