947 resultados para atom interferometry
Resumo:
Erratum to: A high-flux BEC source for mobile atom interferometers in: New Journal of Physics 17 (2015) 065001
Resumo:
Quantum sensors based on coherent matter-waves are precise measurement devices whose ultimate accuracy is achieved with Bose-Einstein condensates (BECs) in extended free fall. This is ideally realized in microgravity environments such as drop towers, ballistic rockets and space platforms. However, the transition from lab-based BEC machines to robust and mobile sources with comparable performance is a challenging endeavor. Here we report on the realization of a miniaturized setup, generating a flux of 4x10(5) quantum degenerate Rb-87 atoms every 1.6 s. Ensembles of 1 x 10(5) atoms can be produced at a 1 Hz rate. This is achieved by loading a cold atomic beam directly into a multi-layer atom chip that is designed for efficient transfer from laser-cooled to magnetically trapped clouds. The attained flux of degenerate atoms is on par with current lab-based BEC experiments while offering significantly higher repetition rates. Additionally, the flux is approaching those of current interferometers employing Raman-type velocity selection of laser-cooled atoms. The compact and robust design allows for mobile operation in a variety of demanding environments and paves the way for transportable high-precision quantum sensors.
Resumo:
We propose a very long baseline atom interferometer test of Einstein's equivalence principle (EEP) with ytterbium and rubidium extending over 10m of free fall. In view of existing parametrizations of EEP violations, this choice of test masses significantly broadens the scope of atom interferometric EEP tests with respect to other performed or proposed tests by comparing two elements with high atomic numbfers. In the first step, our experimental scheme will allow us to reach an accuracy in the Eotvos ratio of 7 . 10(-13). This achievement will constrain violation scenarios beyond our present knowledge and will represent an important milestone for exploring a variety of schemes for further improvements of the tests as outlined in the paper. We will discuss the technical realisation in the new infrastructure of the Hanover Institute of Technology (HITec) and give a short overview of the requirements needed to reach this accuracy. The experiment will demonstrate a variety of techniques, which will be employed in future tests of EEP, high-accuracy gravimetry and gravity gradiometry. It includes operation of a force-sensitive atom interferometer with an alkaline earth-like element in free fall, beam splitting over macroscopic distances and novel source concepts.
Resumo:
这篇文章回顾了近20以来激光冷却原子气体的发展历史,同时概述了激光冷却的各种物理机制,还介绍了超冷原子物理在量子物理学和高科技应用中所取得的重要成就,包括气体原子的玻色-爱因斯坦凝聚、原子钟和原子干涉仪。
Resumo:
We study the quantum dynamics of a two-mode Bose-Einstein condensate in a time-dependent symmetric double-well potential using analytical and numerical methods. The effects of internal degrees of freedom on the visibility of interference fringes during a stage of ballistic expansion are investigated varying particle number, nonlinear interaction sign and strength, as well as tunneling coupling. Expressions for the phase resolution are derived and the possible enhancement due to squeezing is discussed. In particular, the role of the superfluid-Mott insulator crossover and its analog for attractive interactions is recognized.
Resumo:
We demonstrate that it is possible, in principle, to perform a Ramsey-type interference experiment to exhibit a coherent superposition of a single atom and a diatomic molecule. This gedanken experiment, based on the techniques of Aharonov and Susskind [Phys. Rev. 155, 1428 (1967)], explicitly violates the commonly accepted superselection rule that forbids coherent superpositions of eigenstates of differing atom number. A Bose-Einstein condensate plays the role of a reference frame that allows for coherent operations analogous to Ramsey pulses. We also investigate an analogous gedanken experiment to exhibit a coherent superposition of a single boson and a fermion, violating the commonly accepted superselection rule forbidding coherent superpositions of states of differing particle statistics. In this case, the reference frame is realized by a multimode state of many fermions. This latter case reproduces all of the relevant features of Ramsey interferometry, including Ramsey fringes over many repetitions of the experiment. However, the apparent inability of this proposed experiment to produce well-defined relative phases between two distinct systems each described by a coherent superposition of a boson and a fermion demonstrates that there are additional, outstanding requirements to fully lift the univalence superselection rule.
Resumo:
Interferometry is a sensitive technique for recording tear film surface irregularities in a noninvasive manner. At the same time, the technique is hindered by natural eye movements resulting in measurement noise. Estimating tear film surface quality from interferograms can be reduced to a spatial-average-localized weighted estimate of the first harmonic of the interference fringes. However, previously reported estimation techniques proved to perform poorly in cases where the pattern fringes were significantly disturbed. This can occur in cases of measuring tear film surface quality on a contact lens on the eye or in a dry eye. We present a new estimation technique for extracting the first harmonic from the interference fringes that combines the traditional spectral estimation techniques with morphological image processing techniques. The proposed technique proves to be more robust to changes in interference fringes caused by natural eye movements and the degree of dryness of the contact lens and corneal surfaces than its predecessors, resulting in tear film surface quality estimates that are less noisy
Resumo:
There are several noninvasive techniques for assessing the kinetics of tear film, but no comparative studies have been conducted to evaluate their efficacies. Our aim is to test and compare techniques based on high-speed videokeratoscopy (HSV), dynamic wavefront sensing (DWS), and lateral shearing interferometry (LSI). Algorithms are developed to estimate the tear film build-up time TBLD, and the average tear film surface quality in the stable phase of the interblink interval TFSQAv. Moderate but significant correlations are found between TBLD measured with LSI and DWS based on vertical coma (Pearson's r2=0.34, p<0.01) and higher order rms (r2=0.31, p<0.01), as well as between TFSQAv measured with LSI and HSV (r2=0.35, p<0.01), and between LSI and DWS based on the rms fit error (r2=0.40, p<0.01). No significant correlation is found between HSV and DWS. All three techniques estimate tear film build-up time to be below 2.5 sec, and they achieve a remarkably close median value of 0.7 sec. HSV appears to be the most precise method for measuring tear film surface quality. LSI appears to be the most sensitive method for analyzing tear film build-up.
Resumo:
Purpose: To date, there have been no measuring techniques available that could clearly identify all phases of tear film surface kinetics in one interblink interval. ----- ----- Methods: Using a series of cases, we show that lateral shearing interferometry equipped with a set of robust parameter estimation techniques is able to characterize up to five different phases of tear film surface kinetics that include: (i) initial fast tear film build-up phase, (ii) further slower tear film build-up phase, (iii) tear film stability, (iv) tear film thinning, and (v), after a detected break-up, subsequent tear film deterioration. ----- ----- Results: Several representative examples are given for estimating tear film surface kinetics in measurements in which the subjects were asked to blink and keep their eyes open as long as they could. ----- ----- Conclusions: Lateral shearing interferometry is a noninvasive technique that provides means for temporal characterization of tear film surface kinetics and the opportunity for the analysis of the two-step tear film build-up process.
Resumo:
Purpose: To determine likely errors in estimating retinal shape using partial coherence interferometric instruments when no allowance is made for optical distortion. Method: Errors were estimated using Gullstrand’s No. 1 schematic eye and variants which included a 10 D axial myopic eye, an emmetropic eye with a gradient-index lens, and a 10.9 D accommodating eye with a gradient-index lens. Performance was simulated for two commercial instruments, the IOLMaster (Carl Zeiss Meditec) and the Lenstar LS 900 (Haag-Streit AG). The incident beam was directed towards either the centre of curvature of the anterior cornea (corneal-direction method) or the centre of the entrance pupil (pupil-direction method). Simple trigonometry was used with the corneal intercept and the incident beam angle to estimate retinal contour. Conics were fitted to the estimated contours. Results: The pupil-direction method gave estimates of retinal contour that were much too flat. The cornea-direction method gave similar results for IOLMaster and Lenstar approaches. The steepness of the retinal contour was slightly overestimated, the exact effects varying with the refractive error, gradient index and accommodation. Conclusion: These theoretical results suggest that, for field angles ≤30º, partial coherence interferometric instruments are of use in estimating retinal shape by the corneal-direction method with the assumptions of a regular retinal shape and no optical distortion. It may be possible to improve on these estimates out to larger field angles by using optical modeling to correct for distortion.
Resumo:
Density functional theory (DFT) calculations have been carried out to explore the catalytic activation of C–H bonds in methane by the iron atom, Fe, and the iron dimer, Fe2. For methane activation on an Fe atom, the calculations suggest that the activation of the first C–H bond is mediated via the triplet excited-state potential energy surface (PES), with initial excitation of Fe to the triplet state being necessary for the reaction to be energetically feasible. Compared with the breaking of the first C–H bond, the cleavage of the second C–H bond is predicted to involve a significantly higher barrier, which could explain experimental observations of the HFeCH3 complex rather than CH2FeH2 in the activation of methane by an Fe atom. For methane activation on an iron dimer, the cleavage of the first C–H bond is quite facile with a barrier only 11.2, 15.8 and 8.4 kcal/mol on the septet state energy surface at the B3LYP/6-311+G(2df,2dp), BPW91/6-311+G(2df,2dp) and M06/B3LYP level, respectively. Cleavage of the second C–H bond from HFe2CH3 involves a barrier calculated respectively as 18.0, 10.7 and 12.4 kcal/mol at the three levels. The results suggest that the elimination of hydrogen from the dihydrogen complex is a rate-determining step. Overall, our results indicate that the iron dimer Fe2 has a stronger catalytic effect on the activation of methane than the iron atom.
Resumo:
Recent work [S. Chaudhuri, J.T. Muckerman, J. Phys. Chem. B 109 (2005) 6952] reported that two Ti-substituted atoms on an Al(0 0 1) surface can form a catalytically active site for the dissociation of H2, but the diffusion barrier of atomic H away from Ti site is as high as 1.57 eV. By using ab initio density functional calculations, we found that two hydrogen molecules can dissociate on isolated-Ti atom doped Al(0 0 1) surface with small activation barriers (0.21 and 0.235 eV for first and second H2, respectively). Additionally, the diffusion barrier of atomic H away from Ti site is also moderate (0.47 eV). These results contribute further towards understanding the improved kinetics observed in recycling of hydrogen with Ti-doped NaAlH4.