934 resultados para asymmetric distributions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose exact inference procedures for asset pricing models that can be formulated in the framework of a multivariate linear regression (CAPM), allowing for stable error distributions. The normality assumption on the distribution of stock returns is usually rejected in empirical studies, due to excess kurtosis and asymmetry. To model such data, we propose a comprehensive statistical approach which allows for alternative - possibly asymmetric - heavy tailed distributions without the use of large-sample approximations. The methods suggested are based on Monte Carlo test techniques. Goodness-of-fit tests are formally incorporated to ensure that the error distributions considered are empirically sustainable, from which exact confidence sets for the unknown tail area and asymmetry parameters of the stable error distribution are derived. Tests for the efficiency of the market portfolio (zero intercepts) which explicitly allow for the presence of (unknown) nuisance parameter in the stable error distribution are derived. The methods proposed are applied to monthly returns on 12 portfolios of the New York Stock Exchange over the period 1926-1995 (5 year subperiods). We find that stable possibly skewed distributions provide statistically significant improvement in goodness-of-fit and lead to fewer rejections of the efficiency hypothesis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper investigates a simple procedure to estimate robustly the mean of an asymmetric distribution. The procedure removes the observations which are larger or smaller than certain limits and takes the arithmetic mean of the remaining observations, the limits being determined with the help of a parametric model, e.g., the Gamma, the Weibull or the Lognormal distribution. The breakdown point, the influence function, the (asymptotic) variance, and the contamination bias of this estimator are explored and compared numerically with those of competing estimates.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this article, we study some results related to a specific class of distributions, called skew-curved-symmetric family of distributions that depends on a parameter controlling the skewness and kurtosis at the same time. Special elements of this family which are studied include symmetric and well-known asymmetric distributions. General results are given for the score function and the observed information matrix. It is shown that the observed information matrix is always singular for some special cases. We illustrate the flexibility of this class of distributions with an application to a real dataset on characteristics of Australian athletes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper we use Markov chain Monte Carlo (MCMC) methods in order to estimate and compare GARCH models from a Bayesian perspective. We allow for possibly heavy tailed and asymmetric distributions in the error term. We use a general method proposed in the literature to introduce skewness into a continuous unimodal and symmetric distribution. For each model we compute an approximation to the marginal likelihood, based on the MCMC output. From these approximations we compute Bayes factors and posterior model probabilities. (C) 2012 IMACS. Published by Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Statistical evidence is reported that even outside disaster periods, agents face negative consumption skewness, as well as positive inflation skewness. Quantitative implications of skewness risk for nominal loan contracts in a pure exchange economy are derived. Key modeling assumptions are Epstein-Zin preferences for traders and asymmetric distributions for consumption and inflation innovations. The model is solved using a third-order perturbation and estimated by the simulated method of moments. Results show that skewness risk accounts for 6 to 7 percent of the risk premia depending on the bond maturity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The importance of checking the normality assumption in most statistical procedures especially parametric tests cannot be over emphasized as the validity of the inferences drawn from such procedures usually depend on the validity of this assumption. Numerous methods have been proposed by different authors over the years, some popular and frequently used, others, not so much. This study addresses the performance of eighteen of the available tests for different sample sizes, significance levels, and for a number of symmetric and asymmetric distributions by conducting a Monte-Carlo simulation. The results showed that considerable power is not achieved for symmetric distributions when sample size is less than one hundred and for such distributions, the kurtosis test is most powerful provided the distribution is leptokurtic or platykurtic. The Shapiro-Wilk test remains the most powerful test for asymmetric distributions. We conclude that different tests are suitable under different characteristics of alternative distributions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this article, we introduce an asymmetric extension to the univariate slash-elliptical family of distributions studied in Gomez et al. (2007a). This new family results from a scale mixture between the epsilon-skew-symmetric family of distributions and the uniform distribution. A general expression is presented for the density with special cases such as the normal, Cauchy, Student-t, and Pearson type II distributions. Some special properties and moments are also investigated. Results of two real data sets applications are also reported, illustrating the fact that the family introduced can be useful in practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Asymmetric discrete triangular distributions are introduced in order to extend the symmetric ones serving for discrete associated kernels in the nonparametric estimation for discrete functions. The extension from one to two orders around the mode provides a large family of discrete distributions having a finite support. Establishing a bridge between Dirac and discrete uniform distributions, some different shapes are also obtained and their properties are investigated. In particular, the mean and variance are pointed out. Applications to discrete kernel estimators are given with a solution to a boundary bias problem. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Under the conditions of the rotating wave approximation (RWA), a transition strongly driven by a resonant oscillating field displays the well known symmetric Autler-Townes doublet. However, if the counter-rotating component, neglected in the RWA, is taken into account, the Bloch-Siegert shift gives rise to an Autler-Townes doublet of unequal intensity even in the case of a resonant driving field. This effect is investigated theoretically in a V-shaped three-level double-resonance configuration and the results are presented in this paper. An interesting observation is that the level of asymmetry not only depends on the driving-field intensity but also on the characteristics of the driven system including relaxation rates and equilibrium population distributions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Linear mixed models were developed to handle clustered data and have been a topic of increasing interest in statistics for the past 50 years. Generally. the normality (or symmetry) of the random effects is a common assumption in linear mixed models but it may, sometimes, be unrealistic, obscuring important features of among-subjects variation. In this article, we utilize skew-normal/independent distributions as a tool for robust modeling of linear mixed models under a Bayesian paradigm. The skew-normal/independent distributions is an attractive class of asymmetric heavy-tailed distributions that includes the skew-normal distribution, skew-t, skew-slash and the skew-contaminated normal distributions as special cases, providing an appealing robust alternative to the routine use of symmetric distributions in this type of models. The methods developed are illustrated using a real data set from Framingham cholesterol study. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An extension of some standard likelihood based procedures to heteroscedastic nonlinear regression models under scale mixtures of skew-normal (SMSN) distributions is developed. This novel class of models provides a useful generalization of the heteroscedastic symmetrical nonlinear regression models (Cysneiros et al., 2010), since the random term distributions cover both symmetric as well as asymmetric and heavy-tailed distributions such as skew-t, skew-slash, skew-contaminated normal, among others. A simple EM-type algorithm for iteratively computing maximum likelihood estimates of the parameters is presented and the observed information matrix is derived analytically. In order to examine the performance of the proposed methods, some simulation studies are presented to show the robust aspect of this flexible class against outlying and influential observations and that the maximum likelihood estimates based on the EM-type algorithm do provide good asymptotic properties. Furthermore, local influence measures and the one-step approximations of the estimates in the case-deletion model are obtained. Finally, an illustration of the methodology is given considering a data set previously analyzed under the homoscedastic skew-t nonlinear regression model. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper introduces a skewed log-Birnbaum-Saunders regression model based on the skewed sinh-normal distribution proposed by Leiva et al. [A skewed sinh-normal distribution and its properties and application to air pollution, Comm. Statist. Theory Methods 39 (2010), pp. 426-443]. Some influence methods, such as the local influence and generalized leverage, are presented. Additionally, we derived the normal curvatures of local influence under some perturbation schemes. An empirical application to a real data set is presented in order to illustrate the usefulness of the proposed model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Theories of sequence learning based on temporally asymmetric, Hebbian long-term potentiation predict that during route learning the spatial firing distributions of hippocampal neurons should enlarge in a direction opposite to the animal’s movement. On a route AB, increased synaptic drive from cells representing A would cause cells representing B to fire earlier and more robustly. These effects appeared within a few laps in rats running on closed tracks. This provides indirect evidence for Hebbian synaptic plasticity and a functional explanation for why place cells become directionally selective during route following, namely, to preserve the synaptic asymmetry necessary to encode the sequence direction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dependence in the world of uncertainty is a complex concept. However, it exists, is asymmetric, has magnitude and direction, and can be measured. We use some measures of dependence between random events to illustrate how to apply it in the study of dependence between non-numeric bivariate variables and numeric random variables. Graphics show what is the inner dependence structure in the Clayton Archimedean copula and the Bivariate Poisson distribution. We know this approach is valid for studying the local dependence structure for any pair of random variables determined by its empirical or theoretical distribution. And it can be used also to simulate dependent events and dependent r/v/’s, but some restrictions apply. ACM Computing Classification System (1998): G.3, J.2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, it was investigated the possibility of using a geopolymeric membrane as an alternative to the expensive ceramic ones. The goal was to synthesise a low-cost membrane made entirely of geopolymer that can perform equally to commercial membranes. This study initially investigated the feasibility of preparing a microporous support suitable for microfiltration through casting and pressing techniques. Subsequently, a selective geopolymeric layer was developed and deposited on the support, with the capability to operate within the microfiltration range and to effectively separate oil from oil-water emulsions. In order to evaluate the performance, the properties of the geopolymeric supports obtained through pressing were carefully evaluated during the experimentation phase investigating the effect of varying parameters such as sodium silicate content, water content, and applied pressure. The results obtained from these evaluations showed that it is possible to produce supports with excellent porosity and highly controlled narrow pore size distributions. The most promising geopolymeric pressed support was then used for the deposition of a selective layer on its surface. Following physical characterization, it was confirmed that the resulting geopolymer membrane was suitable for use in the microfiltration range. Subsequently, the membrane was tested for its ability to separate oil from water using various emulsions prepared with different surfactants at different concentrations and pH. The results revealed that the fluxes were highly dependent on the electrostatic interaction between the membrane and the emulsion, with best results being obtained with emulsions prepared using anionic surfactants. The rejection rate of the membrane was also found to be extremely high, with values over 95%, comparable to a commercial ceramic membrane. This suggests that geopolymer membranes are suitable alternatives to ceramic membranes, offering the added benefits of lower cost and reduced environmental impact during production.