138 resultados para astrocyte
Resumo:
Glioblastoma (GBM) is the most aggressive type of brain tumor and shows very poor prognosis. Here, using genome-wide methylation analysis, we show that G-CIMP+ and G-CIMP-subtypes enrich distinct classes of biological processes. One of the hypermethylated genes in GBM, ULK2, an upstream autophagy inducer, was found to be down-regulated in GBM. Promoter hypermethylation of ULK2 was confirmed by bisulfite sequencing. GBM and glioma cell lines had low levels of ULK2 transcripts, which could be reversed upon methylation inhibitor treatment. ULK2 promoter methylation and transcript levels showed significant negative correlation. Ectopic overexpression of ULK2-induced autophagy, which further enhanced upon nutrient starvation or temozolomide chemotherapy. ULK2 also inhibited the growth of glioma cells, which required autophagy induction as kinase mutant of ULK2 failed to induce autophagy and inhibit growth. Furthermore, ULK2 induced autophagy and inhibited growth in Ras-transformed immortalized Baby Mouse Kidney (iBMK) ATG5(+/+) but not in autophagy-deficient ATG5(-/-) cells. Growth inhibition due to ULK2 induced high levels of autophagy under starvation or chemotherapy utilized apoptotic cell death but not at low levels of autophagy. Growth inhibition by ULK2 also appears to involve catalase degradation and reactive oxygen species generation. ULK2 overexpression inhibited anchorage independent growth, inhibited astrocyte transformation in vitro and tumor growth in vivo. Of all autophagy genes, we found ULK2 and its homologue ULK1 were only down-regulated in all grades of glioma. Thus these results altogether suggest that inhibition of autophagy by ULK1/2 down-regulation is essential for glioma development.
Resumo:
Thy-1 is an abundant neuronal glycoprotein of poorly defined function. We recently provided evidence indicating that Thy-1 clusters a beta3-containing integrin in astrocytes to induce tyrosine phosphorylation, RhoA activation and the formation of focal adhesions and stress fibers. To date, the alpha subunit partner of beta3 integrin in DI TNC1 astrocytes is unknown. Similarly, the ability of neuronal, membrane-bound Thy-1 to trigger astrocyte signaling via integrin engagement remains speculation. Here, evidence that alphav forms an alphavbeta3 heterodimer in DI TNC1 astrocytes was obtained. In neuron-astrocyte association assays, the presence of either anti-alphav or anti-beta3 integrin antibodies reduced cell-cell interaction demonstrating the requirement of both integrin subunits for this association. Moreover, anti-Thy-1 antibodies blocked stimulation of astrocytes by neurons but not the binding of these two cell types. Thus, neuron-astrocyte association involved binding between molecular components in addition to the Thy-1-integrin; however, the signaling events leading to focal adhesion formation in astrocytes depended exclusively on the latter interaction. Additionally, wild-type (RLD) but not mutated (RLE) Thy-1 was shown to directly interact with alphavbeta3 integrin by Surface Plasmon Resonance analysis. This interaction was promoted by divalent cations and was species-independent. Together, these results demonstrate that the alphavbeta3 integrin heterodimer interacts directly with Thy-1 present on neuronal cells to stimulate astrocytes.
Resumo:
Sustained hypoxia alters the expression of numerous proteins and predisposes individuals to Alzheimer's disease (AD). We have previously shown that hypoxia in vitro alters Ca2+ homeostasis in astrocytes and promotes increased production of amyloid beta peptides (Abeta) of AD. Indeed, alteration of Ca2+ homeostasis requires amyloid formation. Here, we show that electrogenic glutamate uptake by astrocytes is suppressed by hypoxia (1% O2, 24h) in a manner that is independent of amyloid beta peptide formation. Thus, hypoxic suppression of glutamate uptake and expression levels of glutamate transporter proteins EAAT1 and EAAT2 were not mimicked by exogenous application of amyloid beta peptide, or by prevention of endogenous amyloid peptide formation (using inhibitors of either beta or gamma secretase). Thus, dysfunction in glutamate homeostasis in hypoxic conditions is independent of Abeta production, but will likely contribute to neuronal damage and death associated with AD following hypoxic events.
Resumo:
Prion protein (PrP(C)) interaction with stress inducible protein 1 (STI1) mediates neuronal survival and differentiation. However, the function of PrP(C) in astrocytes has not been approached. In this study, we show that STI1 prevents cell death in wild-type astrocytes in a protein kinase A-dependent manner, whereas PrP(C)-null astrocytes were not affected by STI1 treatment. At embryonic day 17, cultured astrocytes and brain extracts derived from PrP(C)-null mice showed a reduced expression of glial fibrillary acidic protein (GFAP) and increased vimentin and nestin expression when compared with wild-type, suggesting a slower rate of astrocyte maturation in PrP(C)-null animals. Furthermore, PrP(C)-null astrocytes treated with STI1 did not differentiate from a flat to a process-bearing morphology, as did wild-type astrocytes. Remarkably, STI1 inhibited proliferation of both wild-type and PrP(C)-null astrocytes in a protein kinase C-dependent manner. Taken together, our data show that PrP(C) and STI1 are essential to astrocyte development and act through distinct signaling pathways.(C) 2009 Wiley-Liss, Inc.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Astroglial cells are the most abundant cells in the mammalian central nervous system, yet our knowledge about their function in bovine Herpesvirus type 5 (BoHV-5) has been limited. The aim of this study was to detect by immunohistochemistry assay the reactive astrocytes for glial fibrilary acidic protein (GFAP) and vimentin (VIM), considered intermediate filaments of the cytoskeleton, localized in olfactory bulb from natural acute cases of BoHV-5 infection. All samples were submitted to virus isolation, real-time polymerase chain reaction (RT-PCR) and in situ hybridization (ISH) technique to confirm the virus transcription and respective genome. Samples were classified into four groups according to the severity of histological lesions. Groups III and IV, which histological lesions were classified as alacia, gliosis, satellitosis, neuronophagia and neuronal necrosis, 35% (± 1.8-2.1) of the inflammatory mononuclear cells, corresponded to CD3 positive lymphocytes. In the same group, 35% (± 1.8) of astrocytes were described as reactive to GFAP and VIM proteins. An agreement of r = 1.0 (P<0.0001) was found between histological lesions, intermediate filaments expression, viral DNA and transcription and CD3 lymphocytes. However, samples with mild histological lesions, 10.8 to 14.2% of astrocytes were classified as reactive to GFAP and VIM filaments. Our findings suggest that GFAP and VIM reactive astrocytes, in primary site of virus replication, seems to play an important role in neurovirulence, in spite of many questions concerning the virus immunopathology remains unclear.
Resumo:
Brain edema is the main cause of death from brain infarction. The polarized expression of the water channel protein aquaporin-4 (AQP4) on astroglial endfeet surrounding brain microvessels suggests a role in brain water balance. Loss of astrocyte foot process anchoring to the basement membrane (BM) accompanied by the loss of polarized localization of AQP4 to astrocytic endfeet has been shown to be associated with vasogenic/extracellular edema in neuroinflammation. Here, we asked if loss of astrocyte polarity is also observed in cytotoxic/intracellular edema following focal brain ischemia after transient middle cerebral artery occlusion (tMCAO). Upon mild focal brain ischemia, we observed diminished immunostaining for the BM components laminin α4, laminin α2, and the proteoglycan agrin, in the core of the lesion, but not in BMs in the surrounding penumbra. Staining for the astrocyte endfoot anchorage protein β-dystroglycan (DG) was dramatically reduced in both the lesion core and the penumbra, and AQP4 and Kir4.1 showed a loss of polarized localization to astrocytic endfeet. Interestingly, we observed that mice deficient for agrin expression in the brain lack polarized localization of β-DG and AQP4 at astrocytic endfeet and do not develop early cytotoxic/intracellular edema following tMCAO. Taken together, these data indicate that the binding of DG to agrin embedded in the subjacent BM promotes polarized localization of AQP4 to astrocyte endfeet. Reduced DG protein levels and redistribution of AQP4 as observed upon tMCAO might therefore counteract early edema formation and reflect a beneficial mechanism operating in the brain to minimize damage upon ischemia.
Resumo:
In multiple sclerosis (MS), and its animal model experimental autoimmune encephalomyelitis (EAE), dysfunction of the blood-brain barrier (BBB) leads to edema formation within the central nervous system. The molecular mechanisms of edema formation in EAE/MS are poorly understood. We hypothesized that edema formation is due to imbalanced water transport across the BBB caused by a disturbed crosstalk between BBB endothelium and astrocytes. Here, we demonstrate at the light microscopic and ultrastructural level, the loss of polarized localization of the water channel protein aquaporin-4 (AQP4) in astrocytic endfeet surrounding microvessels during EAE. AQP4 was found to be redistributed over the entire astrocytic cell surface and lost its arrangement in orthogonal arrays of intramembranous particles as seen in the freeze-fracture replica. In addition, immunostaining for the astrocytic extracellular matrix receptor beta-dystroglycan disappeared from astroglial membranes in the vicinity of inflammatory cuffs, whereas immunostaining for the dystroglycan ligands agrin and laminin in the perivascular basement membrane remained unchanged. Our data suggest that during EAE, loss of beta-dystroglycan-mediated astrocyte foot process anchoring to the basement membrane leads to loss of polarized AQP4 localization in astrocytic endfeet, and thus to edema formation in EAE.
Resumo:
Astrogliosis is induced by neuronal damage and is also a pathological feature of the major aging-related neurodegenerative disorders. The mechanisms that control the cascade of astrogliosis have not been well established. In a previous study, we identified a novel androgen receptor (AR)-interacting protein (p44/WDR77) and found that it plays a critical role in the control of proliferation and differentiation of prostate epithelial cells. In the present study, we found that deletion of the p44 gene in the mouse brain caused accelerated aging with dramatic astrogliosis. The p44/WDR77 is expressed in astrocytes and loss of p44/WDR77 expression in astrocytes leads to astrogliosis. Our results reveal a novel role of p44/WDR77 in astrocytes, which may explain the well-documented role of androgens in suppression of astrogliosis. While many of detailed mechanisms of astrocyte activation remain to be elucidated, a number pathways have been implicated in astrocyte activation including p21Cip1 and the NF-kB pathway. Astrocytic activation induced by p44/WDR77 gene deletion was associated with a significant increase of p21Cip1 expression and NF-kB activation characterized by p65 nuclear localization. We found that down-regulation of p21Cip1 expression inhibited astrocyte activation induced by the p44/WDR77 deletion and was accompanied by a decreased p65 nuclear localization. While p21Cip1 role in astrocyte activation and NF-kB activation is not well understood, studies of other cell cycle regulators have implicated cell cycle control systems as modulators of astrocyte activation, thus p21Cip1 could induce secondary effect to induce p65 nuclear localization. However, p65 knockdown completely relieved the inhibition of astrocyte growth induced by the p44/WDR77 deletion, while p21Cip1 knockdown only partially recovered this inhibition. Thus, NF-kB activity performs additional regulatory actions not mediated by p21Cip1. These analyses imply that p4/WDR77 suppresses astrocyte activation through modulating p21Cip1 expression and NF-kB activation.