37 resultados para astringency
Resumo:
Astringency is an organoleptic property of beverages and food products resulting mainly from the interaction of salivary proteins with dietary polyphenols. It is of great importance to consumers, but the only effective way of measuring it involves trained sensorial panellists, providing subjective and expensive responses. Concurrent chemical evaluations try to screen food astringency, by means of polyphenol and protein precipitation procedures, but these are far from the real human astringency sensation where not all polyphenol–protein interactions lead to the occurrence of precipitate. Here, a novel chemical approach that tries to mimic protein–polyphenol interactions in the mouth is presented to evaluate astringency. A protein, acting as a salivary protein, is attached to a solid support to which the polyphenol binds (just as happens when drinking wine), with subsequent colour alteration that is fully independent from the occurrence of precipitate. Employing this simple concept, Bovine Serum Albumin (BSA) was selected as the model salivary protein and used to cover the surface of silica beads. Tannic Acid (TA), employed as the model polyphenol, was allowed to interact with the BSA on the silica support and its adsorption to the protein was detected by reaction with Fe(III) and subsequent colour development. Quantitative data of TA in the samples were extracted by colorimetric or reflectance studies over the solid materials. The analysis was done by taking a regular picture with a digital camera, opening the image file in common software and extracting the colour coordinates from HSL (Hue, Saturation, Lightness) and RGB (Red, Green, Blue) colour model systems; linear ranges were observed from 10.6 to 106.0 μmol L−1. The latter was based on the Kubelka–Munk response, showing a linear gain with concentrations from 0.3 to 10.5 μmol L−1. In either of these two approaches, semi-quantitative estimation of TA was enabled by direct eye comparison. The correlation between the levels of adsorbed TA and the astringency of beverages was tested by using the assay to check the astringency of wines and comparing these to the response of sensorial panellists. Results of the two methods correlated well. The proposed sensor has significant potential as a robust tool for the quantitative/semi-quantitative evaluation of astringency in wine.
Resumo:
Flavor is the main limiting factor affecting soybean acceptability in the Occidental countries. The purpose of this study was to determine the effetcs of isoflavones on soybean flavor. Differences in beany flavor and astringency of soymilk and cooked whole soybean grains, prepared with cultivars IAS 5 and BR-36 (136 and 54 mg of total isoflavones /100 g of sample, respectively) with pre-soaking and pre-heating of grains, were sensorially analised, by an unstructured category scale of ascending intensity. Differences in isoflavone contents for both soybean cultivars were maintained in the two products, despite the pre-treatments in the processing. Pre-soaking of grains intensified beany flavor in the soymilk, reducing the perception of astringency, which is caused by the aglucones that were developed in reduced amounts.The whole soybeans grains cooked under pressure (1.5 kgf/cm² at 127°C) presented reduced levels of isoflavones malonyl-glucosides. Due to thermal instability, these compounds were converted to conjugated glucosides, genistin and daidzin. In the cooked whole soybean grains, no aglucones were formed and consequently it was not possible to detect differences in astringency. Results suggest that pre-heating of grains promote better flavor in soybean products.
Resumo:
Orosensory perception strongly influences liking and consumption of foods and beverages. This thesis examines the influence of biological sources of individual variation on the perception of prototypical orosensory stimuli, food liking, self-reported alcohol liking and consumption, and indices of health. Two orosensory indices were examined: propylthiouracil (PROP) responsiveness, a genetically-mediated index of individual variation associated with enhanced responsiveness to orosensory stimuli often expressed as PROP taster status (PTS); and thermal taster status (TTS), a recently reported index of orosensory responsiveness. Taster status in PTS and/or TTS confers greater responsiveness to most orosensory stimuli. Gender, age, ethnicity, and fungiform papillae (FP) density were not associated with orosensory responsiveness to tastants, an astringent, and a flavour. Unlike PROP responsiveness, FP density was not associated with TTS. Both PROP responsiveness and TTS were associated with increased responsiveness to orosensory stimuli, including temperature and astringency. For PROP, this association did not hold when stimuli were presented at cold or warm temperatures, which are ecologically valid since most foods and beverages are not consumed at ambient temperature. Thermal tasters (TTs), who perceive 'phantom' taste sensations with lingual thermal stimulation, were more responsive to stimuli at both temperatures than thermal non-tasters (TnTs). While PTS, TIS, and gender affected self-reported liking and consumption of some alcoholic beverages, gender associated with the greatest number of beverage types and consumption parameters, with males generally liking and consuming alcoholic beverages more than females. Age and gender were the best predictors of alcoholic beverageAiking and consumption. As expected, .. liking of bitter and fatty foods and cream was inversely related to PROP responsiveness. TTS did not associate with body mass index or waist circumference, and contrary to previous studies, neither did PROP responsiveness. Taken together, TnTs' greater liking of cooked fruits and vegetables and high alcohol, and astringent alcoholic beverages than TTs suggests differences between TTS groups may be driven by perceived temperature and texture. Neither an interaction between PTS and TTS nor a TTS effect on PROP responsiveness was observed, suggesting these two indices of individual variation exert their influences on orosensory perception independently.
Resumo:
Whey is a by-product of cheese manufacturing and therefore investigating new applications of whey proteins will contribute towards the valorisation of whey and hence waste reduction. This study shows for the first time a detailed comparison of the effectiveness of gelatin and β-lactoglobulin (β-LG) as fining agents. Gelatin was more reactive than whey proteins to tannic acid as shown by both the astringency method (with ovalbumin as a precipitant) and the tannins determination method (with methylcellulose as a precipitant). The two proteins showed similar selectivity for polyphenols but β-LG did not remove as much catechin. The fining agent was removed completely or to a trace level after centrifugation followed by filtration which minimises its potential allergenicity. In addition, improved understanding of protein–tannin interactions was obtained by fluorescence, size measurement and isothermal titration calorimetry (ITC). Overall this study demonstrates that whey proteins have the potential of reducing astringency in red wine and can find a place in enology.
Resumo:
Astringency is an organoleptic property resulting mostly from the interaction of salivary proteins with dietary polyphenols. It is of great importance to consumers but being typically measured by sensorial panels it turns out subjective and expensive. The main goal of the present work is to develop a sensory system to estimate astringency relying on protein/polyphenol interactions. For this purpose, a model protein was immobilized on a sensory gold surface and its subsequent interaction with polyphenols was measured by Surface Plasma Resonance (SPR). α-amylase and pentagalloyl glucose (PGG) were selected as model protein and polyphenol, respectively. To ensure specific binding between these, various surface chemistries were tested. Carboxylic terminated thiol decreased the binding ability of PGG and allowed covalent attachment of α-amylase to the surface. The pH 5 was the optimal condition for α-amylase immobilization on the surface. Further studies focus on Localized SPR sensor and application to wine samples, providing objectivity when compared to a trained panel.
Resumo:
The enzyme beta-glucosidase hydrolyses the isoflavone glucosides developing aglycones, which are compounds with anticancer effects, that are also related with the astringency observed in soybean flavor. Due to the importance of this enzyme, a study was carried out to determine beta-glucosidase activity in soybean (Glycine max (L.) Merrill) cultivars with different contents of isoflavone glucosides (enzyme substrate). The enzyme activity was determined in 51 soybean cultivars sowed in Londrina (latitude 23ºS), in Paraná State, Brazil, and in the cultivar IAS 5 from soybean production regions of different Brazilian states. Among the cultivars, a range of variability of 176.1 to 96.3 units of enzyme activity (cultivars IAC-2 and Embrapa 2, respectively) was observed. A significant variability among cultivars could suggest genetic differences. In the states of Rio Grande do Sul, Paraná and Mato Grosso do Sul, the cultivar IAS 5 presented similar average of beta-glucosidase activity: 132.1, 131.9 and 132.5 units, respectively. Among locations in the states, the cultivar IAS 5 presented a variability for enzyme activity from 138.8 to 124.8 units, which were statistically different. In spite of statistics, the numerical values were not too different to assume that environmental conditions affected enzyme activity. A non-significative correlation for isoflavone glucoside concentrations and enzyme activity was observed among cultivars.
Resumo:
Astringency is traditionally thought to be induced by plant tannins in foods. Because of this current research concerning the mechanism of astringency is focused on tannin‐protein interactions and thus on precipitation, which may be perceived by mechanoreceptors. However, astringency is elicited by a wide range of different phenolic compounds, as well as, some non‐phenolic compounds in various foods. Many ellagitannins or smaller compounds that contribute to astringent properties do not interact with salivary proteins and may be directly perceived through some receptors. Generally, the higher degree of polymerization of proanthocyanidins can be associated with more intense astringency. However, the astringent properties of smaller phenolic compounds may not be directly predicted from the structure of a compound, although glycosylation has a significant role. The astringency of organic acids may be directly linked to the perception of sourness, and this increases along with decreasing pH. Astringency can be divided into different sub‐qualities, including even other qualities than traditional mouth‐drying, puckering or roughing sensations. Astringency is often accompanied by bitter or sour or both taste properties. The different sub‐qualities can be influenced by different astringent compounds. In general, the glycolysation of the phenolic compound results in more velvety and smooth mouthdrying astringency. Flavonol glycosides and other flavonoid compounds and ellagitannins contribute to this velvety mouthdrying astringency. Additionally, they often lack the bitter properties. Proanthocyanidins and phenolic acids elicit more puckering and roughing astringency with some additional bitter properties. Quercetin 3‐O‐rutinoside, along with other quercetin glycosides, is among the key astringent compounds in black tea and red currants. In foods, there are always various other additional attributes that are perceived at the same with astringency. Astringent compounds themselves may have other sensory characteristics, such as bitter or sour properties, or they may enhance or suppress other sensory properties. Components contributing to these other properties, such as sugars, may also have similar effects on astringent sensations. Food components eliciting sweetness or fattiness or some polymeric polysaccharides can be used to mask astringent subqualities. Astringency can generally be referred to as a negative contributor to the liking of various foods. On the other hand, perceptions of astringent properties can vary among individuals. Many genetic factors that influence perceptions of taste properties, such as variations in perceiving a bitter taste or variations in saliva, may also effect the perception of astringency. Individuals who are more sensitive to different sensations may notice the differences between astringent properties more clearly. This may not have effects on the overall perception of astringency. However, in many cases, the liking of astringent foods may need to be learned by repetitive exposure. Astringency is often among the key sensory properties forming the unique overall flavour of certain foods, and therefore it also influences whether or not a food is liked. In many cases, astringency may be an important sub‐property suppressed by other more abundant sensory properties, but it may still have a significant contribution to the overall flavour and thus consumer preferences. The results of the practical work of this thesis show that the astringent phenolic compounds are mostly located in the skin fractions of black currants, crowberries and bilberries (publications I–III). The skin fractions themselves are rather tasteless. However, the astringent phenolic compounds can be efficiently removed from these skin fractions by consecutive ethanol extractions. Berries contain a wide range of different flavonol glycosides, hydroxycinnamic acid derivatives and anthocyanins and some of them strongly contribute to the different astringent and bitterness properties. Sweetness and sourness are located in the juice fractions along with the majority of sugars and fruit acids. The sweet and sour properties of the juice may be used to mask the astringent and bitterness properties of the extracts. Enzymatic treatments increase the astringent properties and fermented flavour of the black currant juice and decrease sweetness and freshness due to the effects on chemical compositions (IV). Sourness and sweetness are positive contributors to the liking of crowberry and bilberry fractions, whereas bitterness is more negative (V). Some astringent properties in berries are clearly negative factors, whereas some may be more positive. The liking of berries is strongly influenced by various consumer background factors, such as motives and health concerns. The liking of berries and berry fractions may also be affected by genetic factors, such as variations in the gene hTAS2R38, which codes bitter taste receptors (V).
Resumo:
Decreased gustatory and olfactory capacity is one of the problems caused by tobacco use. The objectives of this study were to determine the sensory profile of six grape nectar samples sweetened with different sweeteners and to verify the drivers of liking in two distinct consumer groups: smokers and nonsmokers. The sensory profile was constructed by twelve trained panelists using quantitative descriptive analysis (QDA). Consumer tests were performed with 112 smokers and 112 nonsmokers. Partial least squares regression analyses was used to identify the drivers of acceptance and rejection of the grape nectars among the two consumer groups. According to the QDA, the samples differed regarding six of the nineteen attributes generated. The absolute averages of the affective test were lower in the group of smokers; possibly because smoking influences acceptance and eating preferences, especially with regard to sweet foods. The results showed that the grape flavor was the major driver of preference for acceptance of the nectar, while astringency, wine aroma, bitterness and sweetness, and bitter aftertaste were drivers of rejection in the two groups of consumers, with some differences between the groups.
Resumo:
One component that contribute to the flavor and aroma of chocolate are the polyphenols, which have received much attention due to their beneficial implications to human health. Besides bioactive action, polyphenols and methylxantines are responsible for astringency and bitterness in cocoa beans. Another important point is its drastic reduction during cocoa processing for chocolate production and the difference between cultivars. Thus, the present study aimed to evaluate the modifications in monomeric phenolic compounds and methylxanthines during fermentation of three cocoa cultivars grown in southern Bahia. Cocoa beans from three cultivars were fermented and sun dried and monomeric phenolic compounds and methylxantines were determinated. The results showed that each cultivar have different amounts of phenolic compounds and the behaviour of them is different during fermentation. The amount of methylxantines varied but there was not a pattern for methylxantines behavior during process. In addition a huge reduction in phenolic compounds could be observed after drying. Differently of phenolic compounds, methylxantines did not have great modification after sun drying. So, the differences observed in this study between cultivars, take to the conclusion that the compounds studied in those cocoa cultivars have different behavior during fermentation and drying, which consequently, give to these cultivars differences in sensory characteristics.
Resumo:
The odor and taste profile of cocoa bean samples obtained from trees cultivated in southern Mexico were evaluated by trained panelists. Seven representative samples (groups) of a total of 45 were analyzed. Four attributes of taste (sweetness, bitterness, acidity and astringency), and nine of odor (chocolate, nutty, hazelnut, sweet, acidity, roasted, spicy, musty and off-odor) were evaluated. A sample (G7) with higher scores in sweet taste and sweet and nutty odors was detected, as well as a high association between these descriptors and the sample, analyzed through principal component analysis (PCA). Similarly, samples that showed high scores for non-desired odors in cocoas such as off-odor and musty were identified and related by PCA to roasted odor and astringent taste (G2 and G4). Based on this scores, the samples were listed in descending order by their sensory quality as G7> G5> G6> G3> G1> G4> G2.
Resumo:
Abstract The reactions leading to the formation of precursors of chocolate flavor are performed by endogenous enzymes present in the cocoa seed. Polyphenol oxidase (PPO) presence and activity during fermentation of cocoa beans is responsible for the development of flavor precursors and is also implicated in the reduction of bitterness and astringency. However, the reliability of cocoa enzyme activities is complicated due to variations in different genotypes, geographical origins and methods of fermentation. In addition, there is still a lack of systematic studies comparing different cocoa cultivars. So, the present study was designed to characterize the activity of PPO in the pulp and seeds of two cocoa cultivars, PH 16 and TSH 1188. The PPO activity was determined spectrophotometrically and characterized as the optimal substrate concentration, pH and temperature and the results were correlated with the conditions during the fermentation process. The results showed the specificity and differences between the two cocoa cultivars and between the pulp and seeds of each cultivar. It is suggested that specific criteria must be adopted for each cultivar, based on the optimal PPO parameters, to prolong the period of maximum PPO activity during fermentation, contributing to the improvement of the quality of cocoa beans.
Resumo:
The first objective of this study was to identify appropriate sensory descriptors to assess the astringent sub-qualities of red wine. The influence of pH and ethanol on the sensation of astringency in red wine was evaluated, using a de-alcoholized red wine. A portion of the wine was adjusted to the pH values of 3.2, 3.4, 3.6 and 3.8, and another portion was adjusted to ethanol concentrations of 0%, 6%, 12%, and 15%. In addition, the pH 3.4 and 3.6 treatments were adjusted to an ethanol concentration of 12% and 15% all wines were then assessed sensorially and seventeen terms were identified, through panel discussion, to describe the mouth-feel and taste qualities: velvet, aggressive, silk/satin, dry, fleshy, unripe, pucker viscosity, abrasive, heat, chewy, acidity, grippy/adhesive, bitter, balance, overall astringency, and mouth-coat. Descriptive analysis profiling techniques were used to train the panel and measure the intensity of these attributes. It was found that decreasing pH values (averaged across all ethanol concentrations) showed an increase in the overall astringency of the wine. The combined treatments of ethanol and pH, real wine parameters (pH 3.4 and 3.6; 12% and 15% ethanol) did not have an effect on the perception of the astringent sub-qualities of the wine. A time intensity study was also included using the pH and ethanol adjusted wines, which showed that as the ethanol level of the wines increased so did the time to maximum intensity. The second objective was to identify appropriate sensory descriptors to evaluate the influence of grape maturity and maceration technique (grape skin contact) on the astringency sub-qualities of red vinifera wines from Niagara. The grapes were harvested across two dates, representing an early harvest and a late harvest. A portion of the Cabernet Sauvignon grapes wine was divided into three maceration treatments of oneweek maceration, standard two-week maceration, three-week maceration, and MCM. Another portion of both the early and late harvest Cabernet Sauvignon grapes were chaptalized to yield a final ethanol concentration of 14.5%. The wines were assessed sensorially and thirteen terms were identified, through panel discussion, to describe the mouth-feel and taste qualities: carbon dioxide, pucker, acidity, silk/chamois, dusty/chalky/powdery, sandpaper, numbing, grippy/adhesive, dry, mouthcoat, bitter, balance and, overall astringency. Descriptive analysis techniques were used to train the panel and measure the intensity of these attributes. The data revealed few significant differences in the mouth-feel of the wines with respect to maturity; which included differences in overall astringency and balance. There were varietal differences between Cabernet Sauvignon, Cabernet Franc, and Pinot Noir and differences for Cabernet Sauvignon wines due to the length and manner of maceration and as a result of chaptalization. Statistical analysis revealed a more complex mouth-feel for the Pinot Noir wines; and an increase in the intensity of the astringent sub-qualities as a result of the addition of sugar to the wines. These findings have implications for how processing decisions, such as optimum grape maturity and vinification methods may affect red wine quality.
Resumo:
. The influence of vine water status was studied in commercial vineyard blocks of Vilis vinifera L. cv. Cabernet Franc in Niagara Peninsula, Ontario from 2005 to 2007. Vine performance, fruit composition and vine size of non-irrigated grapevines were compared within ten vineyard blocks containing different soil and vine water status. Results showed that within each vineyard block water status zones could be identified on GIS-generated maps using leaf water potential and soil moisture measurements. Some yield and fruit composition variables correlated with the intensity of vine water status. Chemical and descriptive sensory analysis was performed on nine (2005) and eight (2006) pairs of experimental wines to illustrate differences between wines made from high and low water status winegrapes at each vineyard block. Twelve trained judges evaluated six aroma and flavor (red fruit, black cherry, black current, black pepper, bell pepper, and green bean), thr~e mouthfeel (astringency, bitterness and acidity) sensory attributes as well as color intensity. Each pair of high and low water status wine was compared using t-test. In 2005, low water status (L WS) wines from Buis, Harbour Estate, Henry of Pelham (HOP), and Vieni had higher color intensity; those form Chateau des Charmes (CDC) had high black cherry flavor; those at RiefEstates were high in red fruit flavor and at those from George site was high in red fruit aroma. In 2006, low water status (L WS) wines from George, Cave Spring and Morrison sites were high in color intensity. L WS wines from CDC, George and Morrison were more intense in black cherry aroma; LWS wines from Hernder site were high in red fruit aroma and flavor. No significant differences were found from one year to the next between the wines produced from the same vineyard, indicating that the attributes of these wines were maintained almost constant despite markedly different conditions in 2005 and 2006 vintages. Partial ii Least Square (PLS) analysis showed that leaf \}' was associated with red fruit aroma and flavor, berry and wine color intensity, total phenols, Brix and anthocyanins while soil moisture was explained with acidity, green bean aroma and flavor as well as bell pepper aroma and flavor. In another study chemical and descriptive sensory analysis was conducted on nine (2005) and eight (2006) medium water status (MWS) experimental wines to illustrate differences that might support the sub-appellation system in Niagara. The judges evaluated the same aroma, flavor, and mouthfeel sensory attributes as well as color intensity. Data were analyzed using analysis of variance (ANOVA), principal component analysis (PCA) and discriminate analysis (DA). ANOV A of sensory data showed regional differences for all sensory attributes. In 2005, wines from CDC, HOP, and Hemder sites showed highest. r ed fruit aroma and flavor. Lakeshore and Niagara River sites (Harbour, Reif, George, and Buis) wines showed higher bell pepper and green bean aroma and flavor due to proximity to the large bodies of water and less heat unit accumulation. In 2006, all sensory attributes except black pepper aroma were different. PCA revealed that wines from HOP and CDC sites were higher in red fruit, black currant and black cherry aroma and flavor as well as black pepper flavor, while wines from Hemder, Morrison and George sites were high in green bean aroma and flavor. ANOV A of chemical data in 2005 indicated that hue, color intensity, and titratable acidity (TA) were different across the sites, while in 2006, hue, color intensity and ethanol were different across the sites. These data indicate that there is the likelihood of substantial chemical and sensory differences between clusters of sub-appellations within the Niagara Peninsula iii
Resumo:
Flavour is a combination of taste, odour, and chemesthetic sensations. Close associations exist between these sensory modalities, and thus, the overall flavour of a food or beverage product can change when the intensity of one or more of these sensations is altered. Strategies to modify flavour are often utilized by the food industry, and are central to the engineering of new and reformulated products. For functional food and beverages, flavour modification is particularly important, as fortifying agents can elicit high levels of less than desirable sensations, such as bitterness and astringency. The application of various flavour modifying strategies can decrease the perceived intensity of these sensations, and in tum, improve the sensory profile of the product. This collection of studies describes the sensory characteristics of experimental functional beverages fortified with trans-resveratrol, (+)-catechin, and/or caffeine, and examines the impact of novel flavour modifying strategies on the perceived flavour of these beverages. In the first study, results demonstrate that the flavour profile of Cabemet Sauvignon wines fortified with 20 mglL and 200 mg/L of trans-resveratrol is not perceived as different compared to control wine (0 mglL). However, Riesling wine fortified with 200 mg/L is perceived as significantly higher in bitterness compared to 20 mglL and control. For some functional food formulations, alternative strategies for flavour modification are needed. Traditional methods, such as the addition of sucrose and sodium chloride, may decrease the perceived 'healthiness' of a product, and thus, may be sub-optimal. In a second study, high and low concentrations of five different bitter inhibiting compounds - 'bitter blockers' - (B-cyclodextrin, homoeridictyol sodium salt, carboxymethylcellulose - low viscosity, zinc sulfate, magnesium sulfate) were tested for their efficacy towards decreasing the bitterness of high and low concentrations of caffeine and (+)catechin - two health-relevant, plant-derived bitterants. B-cyclodextrin and homoeridictyol sodium salt were the most effective blockers at decreasing (+ )-catechin and caffeine, respectively. In addition to bitter blockers, additional flavour modifying strategies, either alone or in combination - may also be successful in functional food formulations. Both sucrose and rebaudioside A - a plant-derived sweetener - were effective at decreasing the bitterness of (+)catechin. When added to (+)-catechin along with B-cyc1odextrin, both sweeteners provided the most effective decrease in bitterness compared to binary, ternary, or quaternary mixtures of (+)catechin together with bitter blockers, sweeteners, andlor odourants. The perceived intensity of sensations elicited by sweeteners and odourants was not affected by the addition of bitter blockers, and thus, their impact within these complex matrices is minimal. In addition, withinmodal (taste-taste) compared to cross-modal (taste-odour) sensory interactions were more effective at decreasing the bitterness of (+ )-catechin. Overall, results from these studies demonstrate that certain novel, alternative flavour modifying approaches may be successful towards lowering the bitterness and astringency elicited by (+ )-catechin and caffeine in aqueous solutions.
Resumo:
There are many known taste receptors specific to each taste attribute. This thesis examines the relationship between single nucleotide polymorphisms (SNPs) and copy number variations (CNVs) in known taste and taste pathway receptors TAS2R38, Gustin, and TRPM5 and for PROP (6-n-propylthiouracil) taster status (PTS), thermal taster status (TTS), and orosensory sensation intensity ratings. PTS is a proxy for general taste responsiveness, and the ability to taste PROP classifies individuals into three phenotypes: super (PST), medium (PMT), and non-tasters (PNT). Another taste phenotype, also serving as a proxy for general taste responsiveness, is TTS, classifying individuals as thermal tasters (TTs) or thermal non-tasters (TnTs). DNA extractions from buccal cells obtained from 60 individuals were performed and analysis of TAS2R38, Gustin, and TRPM5 variations were conducted through Polymerase Chain Reaction (PCR), sequencing for SNPs, and upQMPSF for CNV analysis of TRPM5. Among the SNPs and CNVs studied, only TAS2R38 was found to be significantly associated with PTS and intensity ratings for sweet, bitter, and sour taste as well as astringency. However, not all PROP phenotypic differences can be explained by the variations at these three SNP sites in TAS2R38, suggesting the involvement of additional genes. No association was found between TTS and TAS2R38 or Gustin, confirming that PTS and TTS are not genetically associated. The examined TRPM5 SNPs and CNVs did not correlate with TTS. Therefore, further research is necessary into other factors contributing to PTS and TTS.