960 resultados para association rules


Relevância:

100.00% 100.00%

Publicador:

Resumo:

For most of the work done in developing association rule mining, the primary focus has been on the efficiency of the approach and to a lesser extent the quality of the derived rules has been emphasized. Often for a dataset, a huge number of rules can be derived, but many of them can be redundant to other rules and thus are useless in practice. The extremely large number of rules makes it difficult for the end users to comprehend and therefore effectively use the discovered rules and thus significantly reduces the effectiveness of rule mining algorithms. If the extracted knowledge can’t be effectively used in solving real world problems, the effort of extracting the knowledge is worth little. This is a serious problem but not yet solved satisfactorily. In this paper, we propose a concise representation called Reliable Approximate basis for representing non-redundant approximate association rules. We prove that the redundancy elimination based on the proposed basis does not reduce the belief to the extracted rules. We also prove that all approximate association rules can be deduced from the Reliable Approximate basis. Therefore the basis is a lossless representation of approximate association rules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Association rule mining is one technique that is widely used when querying databases, especially those that are transactional, in order to obtain useful associations or correlations among sets of items. Much work has been done focusing on efficiency, effectiveness and redundancy. There has also been a focusing on the quality of rules from single level datasets with many interestingness measures proposed. However, with multi-level datasets now being common there is a lack of interestingness measures developed for multi-level and cross-level rules. Single level measures do not take into account the hierarchy found in a multi-level dataset. This leaves the Support-Confidence approach,which does not consider the hierarchy anyway and has other drawbacks, as one of the few measures available. In this paper we propose two approaches which measure multi-level association rules to help evaluate their interestingness. These measures of diversity and peculiarity can be used to help identify those rules from multi-level datasets that are potentially useful.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Association rule mining has made many advances in the area of knowledge discovery. However, the quality of the discovered association rules is a big concern and has drawn more and more attention recently. One problem with the quality of the discovered association rules is the huge size of the extracted rule set. Often for a dataset, a huge number of rules can be extracted, but many of them can be redundant to other rules and thus useless in practice. Mining non-redundant rules is a promising approach to solve this problem. In this paper, we firstly propose a definition for redundancy; then we propose a concise representation called Reliable basis for representing non-redundant association rules for both exact rules and approximate rules. An important contribution of this paper is that we propose to use the certainty factor as the criteria to measure the strength of the discovered association rules. With the criteria, we can determine the boundary between redundancy and non-redundancy to ensure eliminating as many redundant rules as possible without reducing the inference capacity of and the belief to the remaining extracted non-redundant rules. We prove that the redundancy elimination based on the proposed Reliable basis does not reduce the belief to the extracted rules. We also prove that all association rules can be deduced from the Reliable basis. Therefore the Reliable basis is a lossless representation of association rules. Experimental results show that the proposed Reliable basis can significantly reduce the number of extracted rules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recommender systems are widely used online to help users find other products, items etc that they may be interested in based on what is known about that user in their profile. Often however user profiles may be short on information and thus when there is not sufficient knowledge on a user it is difficult for a recommender system to make quality recommendations. This problem is often referred to as the cold-start problem. Here we investigate whether association rules can be used as a source of information to expand a user profile and thus avoid this problem, leading to improved recommendations to users. Our pilot study shows that indeed it is possible to use association rules to improve the performance of a recommender system. This we believe can lead to further work in utilising appropriate association rules to lessen the impact of the cold-start problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recommender systems are widely used online to help users find other products, items etc that they may be interested in based on what is known about that user in their profile. Often however user profiles may be short on information and thus it is difficult for a recommender system to make quality recommendations. This problem is known as the cold-start problem. Here we investigate using association rules as a source of information to expand a user profile and thus avoid this problem. Our experiments show that it is possible to use association rules to noticeably improve the performance of a recommender system under the cold-start situation. Furthermore, we also show that the improvement in performance obtained can be achieved while using non-redundant rule sets. This shows that non-redundant rules do not cause a loss of information and are just as informative as a set of association rules that contain redundancy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Association rule mining has contributed to many advances in the area of knowledge discovery. However, the quality of the discovered association rules is a big concern and has drawn more and more attention recently. One problem with the quality of the discovered association rules is the huge size of the extracted rule set. Often for a dataset, a huge number of rules can be extracted, but many of them can be redundant to other rules and thus useless in practice. Mining non-redundant rules is a promising approach to solve this problem. In this paper, we first propose a definition for redundancy, then propose a concise representation, called a Reliable basis, for representing non-redundant association rules. The Reliable basis contains a set of non-redundant rules which are derived using frequent closed itemsets and their generators instead of using frequent itemsets that are usually used by traditional association rule mining approaches. An important contribution of this paper is that we propose to use the certainty factor as the criterion to measure the strength of the discovered association rules. Using this criterion, we can ensure the elimination of as many redundant rules as possible without reducing the inference capacity of the remaining extracted non-redundant rules. We prove that the redundancy elimination, based on the proposed Reliable basis, does not reduce the strength of belief in the extracted rules. We also prove that all association rules, their supports and confidences, can be retrieved from the Reliable basis without accessing the dataset. Therefore the Reliable basis is a lossless representation of association rules. Experimental results show that the proposed Reliable basis can significantly reduce the number of extracted rules. We also conduct experiments on the application of association rules to the area of product recommendation. The experimental results show that the non-redundant association rules extracted using the proposed method retain the same inference capacity as the entire rule set. This result indicates that using non-redundant rules only is sufficient to solve real problems needless using the entire rule set.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In today’s electronic world vast amounts of knowledge is stored within many datasets and databases. Often the default format of this data means that the knowledge within is not immediately accessible, but rather has to be mined and extracted. This requires automated tools and they need to be effective and efficient. Association rule mining is one approach to obtaining knowledge stored with datasets / databases which includes frequent patterns and association rules between the items / attributes of a dataset with varying levels of strength. However, this is also association rule mining’s downside; the number of rules that can be found is usually very big. In order to effectively use the association rules (and the knowledge within) the number of rules needs to be kept manageable, thus it is necessary to have a method to reduce the number of association rules. However, we do not want to lose knowledge through this process. Thus the idea of non-redundant association rule mining was born. A second issue with association rule mining is determining which ones are interesting. The standard approach has been to use support and confidence. But they have their limitations. Approaches which use information about the dataset’s structure to measure association rules are limited, but could yield useful association rules if tapped. Finally, while it is important to be able to get interesting association rules from a dataset in a manageable size, it is equally as important to be able to apply them in a practical way, where the knowledge they contain can be taken advantage of. Association rules show items / attributes that appear together frequently. Recommendation systems also look at patterns and items / attributes that occur together frequently in order to make a recommendation to a person. It should therefore be possible to bring the two together. In this thesis we look at these three issues and propose approaches to help. For discovering non-redundant rules we propose enhanced approaches to rule mining in multi-level datasets that will allow hierarchically redundant association rules to be identified and removed, without information loss. When it comes to discovering interesting association rules based on the dataset’s structure we propose three measures for use in multi-level datasets. Lastly, we propose and demonstrate an approach that allows for association rules to be practically and effectively used in a recommender system, while at the same time improving the recommender system’s performance. This especially becomes evident when looking at the user cold-start problem for a recommender system. In fact our proposal helps to solve this serious problem facing recommender systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is a big challenge to find useful associations in databases for user specific needs. The essential issue is how to provide efficient methods for describing meaningful associations and pruning false discoveries or meaningless ones. One major obstacle is the overwhelmingly large volume of discovered patterns. This paper discusses an alternative approach called multi-tier granule mining to improve frequent association mining. Rather than using patterns, it uses granules to represent knowledge implicitly contained in databases. It also uses multi-tier structures and association mappings to represent association rules in terms of granules. Consequently, association rules can be quickly accessed and meaningless association rules can be justified according to the association mappings. Moreover, the proposed structure is also an precise compression of patterns which can restore the original supports. The experimental results shows that the proposed approach is promising.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Association rule mining is one technique that is widely used when querying databases, especially those that are transactional, in order to obtain useful associations or correlations among sets of items. Much work has been done focusing on efficiency, effectiveness and redundancy. There has also been a focusing on the quality of rules from single level datasets with many interestingness measures proposed. However, with multi-level datasets now being common there is a lack of interestingness measures developed for multi-level and cross-level rules. Single level measures do not take into account the hierarchy found in a multi-level dataset. This leaves the Support-Confidence approach, which does not consider the hierarchy anyway and has other drawbacks, as one of the few measures available. In this chapter we propose two approaches which measure multi-level association rules to help evaluate their interestingness by considering the database’s underlying taxonomy. These measures of diversity and peculiarity can be used to help identify those rules from multi-level datasets that are potentially useful.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As of today, opinion mining has been widely used to iden- tify the strength and weakness of products (e.g., cameras) or services (e.g., services in medical clinics or hospitals) based upon people's feed- back such as user reviews. Feature extraction is a crucial step for opinion mining which has been used to collect useful information from user reviews. Most existing approaches only find individual features of a product without the structural relationships between the features which usually exists. In this paper, we propose an approach to extract features and feature relationship, represented as tree structure called a feature hi- erarchy, based on frequent patterns and associations between patterns derived from user reviews. The generated feature hierarchy profiles the product at multiple levels and provides more detailed information about the product. Our experiment results based on some popularly used review datasets show that the proposed feature extraction approach can identify more correct features than the baseline model. Even though the datasets used in the experiment are about cameras, our work can be ap- plied to generate features about a service such as the services in hospitals or clinics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study was a step forward to improve the performance for discovering useful knowledge – especially, association rules in this study – in databases. The thesis proposed an approach to use granules instead of patterns to represent knowledge implicitly contained in relational databases; and multi-tier structure to interpret association rules in terms of granules. Association mappings were proposed for the construction of multi-tier structure. With these tools, association rules can be quickly assessed and meaningless association rules can be justified according to the association mappings. The experimental results indicated that the proposed approach is promising.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dealing with the large amount of data resulting from association rule mining is a big challenge. The essential issue is how to provide efficient methods for summarizing and representing meaningful discovered knowledge from databases. This paper presents a new approach called multi-tier granule mining to improve the performance of association rule mining. Rather than using patterns, it uses granules to represent knowledge that is implicitly contained in relational databases. This approach also uses multi-tier structures and association mappings to interpret association rules in terms of granules. Consequently, association rules can be quickly assessed and meaningless association rules can be justified according to these association mappings. The experimental results indicate that the proposed approach is promising