860 resultados para assembly operations
Resumo:
Assembly job shop scheduling problem (AJSP) is one of the most complicated combinatorial optimization problem that involves simultaneously scheduling the processing and assembly operations of complex structured products. The problem becomes even more complicated if a combination of two or more optimization criteria is considered. This thesis addresses an assembly job shop scheduling problem with multiple objectives. The objectives considered are to simultaneously minimizing makespan and total tardiness. In this thesis, two approaches viz., weighted approach and Pareto approach are used for solving the problem. However, it is quite difficult to achieve an optimal solution to this problem with traditional optimization approaches owing to the high computational complexity. Two metaheuristic techniques namely, genetic algorithm and tabu search are investigated in this thesis for solving the multiobjective assembly job shop scheduling problems. Three algorithms based on the two metaheuristic techniques for weighted approach and Pareto approach are proposed for the multi-objective assembly job shop scheduling problem (MOAJSP). A new pairing mechanism is developed for crossover operation in genetic algorithm which leads to improved solutions and faster convergence. The performances of the proposed algorithms are evaluated through a set of test problems and the results are reported. The results reveal that the proposed algorithms based on weighted approach are feasible and effective for solving MOAJSP instances according to the weight assigned to each objective criterion and the proposed algorithms based on Pareto approach are capable of producing a number of good Pareto optimal scheduling plans for MOAJSP instances.
Resumo:
Includes bibliography
Resumo:
Flexible Assembly Systems (FASs) are normally associated with the automatic, or robotic, assembly of products, supported by automated material handling systems. However, manual assembly operations are still prevalent within many industries, where the complexity and variety of products prohibit the development of suitable automated assembly equipment. This article presents a generic model for incorporating flexibility into the design and control of assembly operations concerned with high variety/low volume manufacture, drawing on the principles for Flexible Manufacturing Systems (FMS) and Just-in-Time (JIT) delivery. It is based on work being undertaken in an electronics company where the assembly operations have been overhauled and restructured in response to a need for greater flexibility, shorter cycle times and reduced inventory levels. The principles employed are in themselves not original. However, the way they have been combined and tailored has created a total manufacturing control system which represents a new concept for responding to demands placed on market driven firms operating in an uncertain environment.
Resumo:
Human and robots have complementary strengths in performing assembly operations. Humans are very good at perception tasks in unstructured environments. They are able to recognize and locate a part from a box of miscellaneous parts. They are also very good at complex manipulation in tight spaces. The sensory characteristics of the humans, motor abilities, knowledge and skills give the humans the ability to react to unexpected situations and resolve problems quickly. In contrast, robots are very good at pick and place operations and highly repeatable in placement tasks. Robots can perform tasks at high speeds and still maintain precision in their operations. Robots can also operate for long periods of times. Robots are also very good at applying high forces and torques. Typically, robots are used in mass production. Small batch and custom production operations predominantly use manual labor. The high labor cost is making it difficult for small and medium manufacturers to remain cost competitive in high wage markets. These manufactures are mainly involved in small batch and custom production. They need to find a way to reduce the labor cost in assembly operations. Purely robotic cells will not be able to provide them the necessary flexibility. Creating hybrid cells where humans and robots can collaborate in close physical proximities is a potential solution. The underlying idea behind such cells is to decompose assembly operations into tasks such that humans and robots can collaborate by performing sub-tasks that are suitable for them. Realizing hybrid cells that enable effective human and robot collaboration is challenging. This dissertation addresses the following three computational issues involved in developing and utilizing hybrid assembly cells: - We should be able to automatically generate plans to operate hybrid assembly cells to ensure efficient cell operation. This requires generating feasible assembly sequences and instructions for robots and human operators, respectively. Automated planning poses the following two challenges. First, generating operation plans for complex assemblies is challenging. The complexity can come due to the combinatorial explosion caused by the size of the assembly or the complex paths needed to perform the assembly. Second, generating feasible plans requires accounting for robot and human motion constraints. The first objective of the dissertation is to develop the underlying computational foundations for automatically generating plans for the operation of hybrid cells. It addresses both assembly complexity and motion constraints issues. - The collaboration between humans and robots in the assembly cell will only be practical if human safety can be ensured during the assembly tasks that require collaboration between humans and robots. The second objective of the dissertation is to evaluate different options for real-time monitoring of the state of human operator with respect to the robot and develop strategies for taking appropriate measures to ensure human safety when the planned move by the robot may compromise the safety of the human operator. In order to be competitive in the market, the developed solution will have to include considerations about cost without significantly compromising quality. - In the envisioned hybrid cell, we will be relying on human operators to bring the part into the cell. If the human operator makes an error in selecting the part or fails to place it correctly, the robot will be unable to correctly perform the task assigned to it. If the error goes undetected, it can lead to a defective product and inefficiencies in the cell operation. The reason for human error can be either confusion due to poor quality instructions or human operator not paying adequate attention to the instructions. In order to ensure smooth and error-free operation of the cell, we will need to monitor the state of the assembly operations in the cell. The third objective of the dissertation is to identify and track parts in the cell and automatically generate instructions for taking corrective actions if a human operator deviates from the selected plan. Potential corrective actions may involve re-planning if it is possible to continue assembly from the current state. Corrective actions may also involve issuing warning and generating instructions to undo the current task.
Resumo:
More than ever, the economic globalization is creating the need to increase business competitiveness. Lean manufacturing is a management philosophy oriented to the elimination of activities that do not create any type of value and are thus considered a waste. One of the main differences from other management philosophies is the shop-floor focus and the operators' involvement. Therefore, the training of all organization levels is crucial for the success of lean manufacturing. Universities should also participate actively in this process by developing students' lean management skills and promoting a better and faster integration of students into their future organizations. This paper proposes a single realistic manufacturing platform, involving production and assembly operations, to learn by playing many of the lean tools such as VSM, 5S, SMED, poke-yoke, line balance, TPM, Mizusumashi, plant layout, and JIT/kanban. This simulation game was built in tight cooperation with experienced lean companies under the international program “Lean Learning Academy,”http://www.leanlearningacademy.eu/ and its main aim is to make bachelor and master courses in applied sciences more attractive by integrating classic lectures with a simulated production environment that could result in more motivated students and higher study yields. The simulation game results show that our approach is efficient in providing a realistic platform for the effective learning of lean principles, tools, and mindset, which can be easily included in course classes of less than two hours.
Resumo:
In an increasingly competitive and globalized world, companies need effective training methodologies and tools for their employees. However, selecting the most suitable ones is not an easy task. It depends on the requirements of the target group (namely time restrictions), on the specificities of the contents, etc. This is typically the case for training in Lean, the waste elimination manufacturing philosophy. This paper presents and compares two different approaches to lean training methodologies and tools: a simulation game based on a single realistic manufacturing platform, involving production and assembly operations that allows learning by playing; and a digital game that helps understand lean tools. This paper shows that both tools have advantages in terms of trainee motivation and knowledge acquisition. Furthermore, they can be used in a complementary way, reinforcing the acquired knowledge.
Resumo:
Hoje em dia, e com os avanços tecnológicos a surgirem de forma constante, existem novas áreas que têm de ser consideradas com um foco importante por parte de todas as organizações, sendo uma delas a robótica industrial. Motivada em aumentar o seu output, as condições de trabalho para os seus colaboradores, bem como todas as condições de organização da logística interna, a Grohe Portugal, mais especificamente o departamento da montagem, achou relevante fazer um estudo de métodos e tempos, calculando os ganhos potenciais de aumento de output com introdução de robótica nas linhas dos cartuchos. Os objetivos principais seriam então, fazer uma restruturação de todo o layout dessas linhas, tendo como foco automatizar alguma(s) operação(ões), conseguindo assim uma melhoria significativa do output dessas linhas com o menor payback possível. Posto isto, esta dissertação pretende apresentar o trabalho desenvolvido junto da Grohe Portugal, que teve como objetivo fazer os estudos e a automatização de linhas de montagem de cartuchos, bem como melhorar algumas linhas de montagem tendo em conta fatores ergonómicos. Relativamente à automatização da linha dos cartuchos, foi importante estudar todos os seguintes aspetos: utilização de unidades robóticas; ergonomia; ganhos de produtividade; automatizar ou semi-automatizar operações; simplificar processos de montagem; simplificar setups; solicitar orçamentos; elaborar caderno de encargos. Para a realização deste projeto, o trabalho desenvolvido foi decomposto em várias etapas, entre as quais se destacam: análise e estudo dos métodos e sequências de montagem; levantamento de todos os componentes e operações de montagem até à obtenção do cartucho final; estudo de tempos de todas essas operações de montagem; caraterização de um novo layout para as linhas com a introdução de unidades robóticas, tanto quanto possível, mais adequadas; elaboração de caderno de encargos para ser enviado a empresas, para estas poderem apresentar uma orçamentação, bem como indicar as unidades robóticas mais adequadas para as tarefas pretendidas; automatização da linha dos cartuchos. Relativamente ao projeto de novas linhas de montagem tendo em conta fatores ergonómicos, de forma a melhorar os sistemas de abastecimento e as condições de trabalho por parte dos operadores, foram postos em prática diferentes passos, nomeadamente: identificação de todos os processos de montagem realizados pelos operadores na linha a melhorar; estudo e definição da disposição dos componentes na nova linha, bem como a sua forma de abastecimento; projeto da nova linha de montagem em 3D com recurso ao software SolidWorks; realização prática da linha, acompanhando e ajudando a equipa da ferramentaria. O balanço final do trabalho foi bastante positivo, tanto na automatização das linhas de montagem dos cartuchos, em que todo o seu estudo foi alcançado com sucesso, como no melhoramento ergonómico das linhas de montagem, tendo-se alcançado melhorias em alguns índices de qualidade, tempos de abastecimento, organização das linhas, e nas condições de iluminação, resultando essas melhorias numa avaliação positiva por parte dos colaboradores que nelas trabalham todos os dias.
Resumo:
Production flow analysis (PFA) is a well-established methodology used for transforming traditional functional layout into product-oriented layout. The method uses part routings to find natural clusters of workstations forming production cells able to complete parts and components swiftly with simplified material flow. Once implemented, the scheduling system is based on period batch control aiming to establish fixed planning, production and delivery cycles for the whole production unit. PFA is traditionally applied to job-shops with functional layouts, and after reorganization within groups lead times reduce, quality improves and motivation among personnel improves. Several papers have documented this, yet no research has studied its application to service operations management. This paper aims to show that PFA can well be applied not only to job-shop and assembly operations, but also to back-office and service processes with real cases. The cases clearly show that PFA reduces non-value adding operations, introduces flow by evening out bottlenecks and diminishes process variability, all of which contribute to efficient operations management.
Resumo:
Manufacturing has evolved to become a critical element of the competitive skill set of defense aerospace firms. Given the changes in the acquisition environment and culture; traditional “thrown over the wall” means of developing and manufacturing products are insufficient. Also, manufacturing systems are complex systems that need to be carefully designed in a holistic manner and there are shortcomings with available tools and methods to assist in the design of these systems. This paper outlines the generation and validation of a framework to guide this manufacturing system design process.
Resumo:
This paper presents the research and development of a 3-legged micro Parallel Kinematic Manipulator (PKM) for positioning in micro-machining and assembly operations. The structural characteristics associated with parallel manipulators are evaluated and the PKMs with translational and rotational movements are identified. Based on these identifications, a hybrid 3-UPU (Universal Joint-Prismatic Joint-Universal Joint) parallel manipulator is designed and fabricated. The principles of the operation and modeling of this micro PKM is largely similar to a normal size Stewart Platform (SP). A modular design methodology is introduced for the construction of this micro PKM. Calibration results of this hybrid 3-UPU PKM are discussed in this paper.
Resumo:
Manufacturing has evolved to become a critical element of the competitive skill set of defense aerospace firms. Given the changes in the acquisition environment and culture; traditional “thrown over the wall” means of developing and manufacturing products are insufficient. Also, manufacturing systems are complex systems that need to be carefully designed in a holistic manner and there are shortcomings with available tools and methods to assist in the design of these systems. This paper outlines the generation and validation of a framework to guide this manufacturing system design process.
Resumo:
Thermal non-destructive testing (NDT) is commonly used for assessing aircraft structures. This research work evaluates the potential of pulsed -- transient thermography for locating fixtures beneath aircraft skins in order to facilitate accurate automated assembly operations. Representative aluminium and carbon fibre aircraft skin-fixture assemblies were modelled using thermal modelling software. The assemblies were also experimentally investigated with an integrated pulsed thermographic evaluation system, as well as using a custom built system incorporating a miniature un-cooled camera. Modelling showed that the presence of an air gap between skin and fixture significantly reduced the thermal contrast developed, especially in aluminium. Experimental results show that fixtures can be located to accuracies of 0.5 mm.
Resumo:
Includes bibliography
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Academic researchers have followed closely the interest of companies in establishing industrial networks by studying aspects such as social interaction and contractual relationships. But what patterns underlie the emergence of industrial networks and what support should research provide for practitioners? Firstly, it appears that manufacturing is becoming a commodity rather than a unique capability, which accounts especially for low-technology approaches in downstream parts of the network, for example in assembly operations. Secondly, the increased tendency towards specialization has forced other, upstream, parts of industrial networks to introduce advanced manufacturing technologies to supply niche markets. Thirdly, the capital market for investments in capacity, and the trade in manufacturing as a commodity, dominates resource allocation to a larger extent than previously was the case. Fourthly, there is a continuous move towards more loosely connected entities that comprise manufacturing networks. More traditional concepts, such as the “keiretsu” and “chaibol” networks of some Asian economies, do not sufficiently support the demands now being placed on networks. Research should address these four fundamental challenges to prepare for the industrial networks of 2020 and beyond.