933 resultados para asphaltene phase behavior


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Asphaltenes are blamed for various problems in the petroleum industry, especially formation of solid deposits and stabilization of water-in-oil emulsions. Many studies have been conducted to characterize chemical structures of asphaltenes and assess their phase behavior in crude oil or in model-systems of asphaltenes extracted from oil or asphaltic residues from refineries. However, due to the diversity and complexity of these structures, there is still much to be investigated. In this study, asphaltene (sub)fractions were extracted from an asphaltic residue (AR02), characterized by NMR, elemental analysis, X-ray fluorescence and MS-TOF, and compared to asphaltene subfractions obtained from another asphaltic residue (AR01) described in a previous article. The (sub)fractions obtained from the two residues were used to prepare model-systems containing 1 wt% of asphaltenes in toluene and their phase behavior was evaluated by measuring asphaltene precipitation onset using optical microscopy. The results obtained indicated minor differences between the asphaltene fractions obtained from the asphaltic residues of distinct origins, with respect to aromaticity, elemental composition (CHN), presence and content of heteroelements and average molar mass. Regarding stability, minor differences in molecule polarity appear to promote major differences in the phase behavior of each of the asphaltene fractions isolated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce a simple model for a biaxial nematic liquid crystal. This consists of hard spheroids that can switch shape between prolate (rodlike) and oblate (platelike) subject to an energy penalty Δε. The spheroids are approximated as hard Gaussian overlap particles and are treated at the level of Onsager's second-virial description. We use both bifurcation analysis and a numerical minimization of the free energy to show that, for additive particle shapes, (i) there is no stable biaxial phase even for Δε=0 (although there is a metastable biaxial phase in the same density range as the stable uniaxial phase) and (ii) the isotropic-to-nematic transition is into either one of two degenerate uniaxial phases, rod rich or plate rich. We confirm that even a small amount of shape nonadditivity may stabilize the biaxial nematic phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article reports the phase behavior determi- nation of a system forming reverse liquid crystals and the formation of novel disperse systems in the two-phase region. The studied system is formed by water, cyclohexane, and Pluronic L-121, an amphiphilic block copolymer considered of special interest due to its aggregation and structural proper- ties. This system forms reverse cubic (I2) and reverse hexagonal (H2) phases at high polymer concentrations. These reverse phases are of particular interest since in the two-phase region, stable high internal phase reverse emulsions can be formed. The characterization of the I2 and H2 phases and of the derived gel emulsions was performed with small-angle X-ray scattering (SAXS) and rheometry, and the influence of temperature and water content was studied. TheH2 phase experimented a thermal transition to an I2 phase when temperature was increased, which presented an Fd3m structure. All samples showed a strong shear thinning behavior from low shear rates. The elasticmodulus (G0) in the I2 phase was around 1 order of magnitude higher than in theH2 phase. G0 was predominantly higher than the viscousmodulus (G00). In the gel emulsions,G0 was nearly frequency-independent, indicating their gel type nature. Contrarily to water-in-oil (W/O) normal emulsions, in W/I2 and W/H2 gel emulsions, G0, the complex viscosity (|η*|), and the yield stress (τ0) decreased with increasing water content, since the highly viscous microstructure of the con- tinuous phase was responsible for the high viscosity and elastic behavior of the emulsions, instead of the volumefraction of dispersed phase and droplet size. A rheological analysis, in which the cooperative flow theory, the soft glass rheology model, and the slip plane model were analyzed and compared, was performed to obtain one single model that could describe the non-Maxwellian behavior of both reverse phases and highly concentrated emulsions and to characterize their microstructure with the rheological properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Equilibrium phase diagrams are calculated for a selection of two-component block copolymer architectures using self-consistent field theory (SCFT). The topology of the phase diagrams is relatively unaffected by differences in architecture, but the phase boundaries shift significantly in composition. The shifts are consistent with the decomposition of architectures into constituent units as proposed by Gido and coworkers, but there are significant quantitative deviations from this principle in the intermediate-segregation regime. Although the complex phase windows continue to be dominated by the gyroid (G) phase, the regions of the newly discovered Fddd (O^70) phase become appreciable for certain architectures and the perforated-lamellar (PL) phase becomes stable when the complex phase windows shift towards high compositional asymmetry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ternary phase diagram for the orange essential oil (OEO)/sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/water system was constructed at 25 degrees C. It indicates a large single phase region, comprising an isotropic water-in-oil (W/O) microemulsion (ME) phase (L(2)), a liquid crystal (LC) (lamellar or hexagonal) and a large unstable emulsion phase that separates in two phases of normal and reverse micelles (L(1) and L(2)). In this communication the properties of the ME are investigated by viscosity, electric conductivity and small angle X-ray scattering (SAXS) indicating that the isotropic ME phase exhibits different behaviors depending on composition. At low water content low viscous ""dry"" surfactant structures are formed, whereas at higher water content higher viscous water droplets are formed. The experimental data allow the determination of the transition from ""dry"" to the water droplet structures within the L(2) phase. SAXS analyses have also been performed for selected LC samples. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthetic lipid 1,2-dimyristoyl-sn-3-phosphoglycerol (DMPG), when dispersed in water/NaCl exhibits a complex phase behavior caused by its almost unlimited swelling in excess water. Using deuterium ((2)H)- and phosphorus ((31)P)-NMR we have studied the molecular properties of DMPG/water/NaCl dispersions as a function of lipid and NaCl concentration. We have measured the order profile of the hydrophobic part of the lipid bilayer with deuterated DMPG while the orientation of the phosphoglycerol headgroup was deduced from the (31)P NMR chemical shielding anisotropy. At temperatures > 30 degrees C we observe well-resolved (2)H- and (31)P NMR spectra not much different from other liquid crystalline bilayers. From the order profiles it is possible to deduce the average length of the flexible fatty acyl chain. Unusual spectra are obtained in the temperature interval of 20-25 degrees C, indicating one or several phase transitions. The most dramatic changes are seen at low lipid concentration and low ionic strength. Under these conditions and at 25 degrees C, the phosphoglycerol headgroup rotates into the hydrocarbon layer and the hydrocarbon chains show larger flexing motions than at higher temperatures. The orientation of the phosphoglycerol headgroup depends on the bilayer surface charge and correlates with the degree of dissociation of DMPG-Na(+). The larger the negative surface charge, the more the headgroup rotates toward the nonpolar region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of the micelle-forming surfactant series alkyltrimethylammonium bromide (C(n)TAB, n = 12, 14, 16 and 18) on the thermotropic phase behavior of dioctadecyldimethylammonium bromide (DODAB) vesicles in water was investigated by differential scanning calorimetry at constant 5.0 mM total surfactant concentration and varying individual surfactant concentrations. The pre-, post- and main transition temperatures (T-s, T-p and T-m), melting enthalpy (Delta H) and peak width of the main transition (Delta T-1/2) are reported as a function of the surfactant molar fraction. No clear dependence of these parameters on the C(n)TAB chain length was found. At 5 mM, neat DODAB in water exhibits two transition temperatures, T-s = 32.1 and T-m = 42.7 degrees C, as obtained from the DSC upscans, but not a clear T-p. For every n, except n = 12, T-s vanishes as CnTAB concentration increases and approaches CMC. T-m behaves differently for different n, the longer C(14)TAB and C(16)TAB decrease, while C(18)TAB increases T-m with increasing concentration. The data indicate that changes in T-m, T-s, T-p and Delta H of the transition are related not only to the extent of C(n)TAB affinity to DODAB but also to the surfactant chain length. Accordingly, C18TAB yields a more compact bilayer, thus increasing T-m, while C(14)TAB and C(1G)TAB yield a less organized bilayer and reduce T-m. C(12)TAB does not much affect T-s and T-m, although it yields T-p approximate to 51.6 degrees C. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The understanding of biological membranes may be improved by investigating physical properties of vesicles from natural or synthetic amphiphiles. The application of vesicles as mimetic agents depends on the knowledgment of their structure and properties. Vesicles having different curvature and size may be obtained using different preparation protocols. We have used differential scanning calorimetry (DSC) and steady-state fluorescence to investigate the gel to liquid-crystal phase transition of vesicles prepared by sonication (SUV) and non-sonication (GUV) of the synthetic dioctadecyldimethylammonium bromide (DODAB) in aqueous solution. DSC thermograms for a non-sonicated dispersion show a well-defined pre- and main transition corresponding to two narrow peaks at 36 and 45°C in the first upscan, while in a second upscan, only the main peak was observed. The sharpness of the peaks indicate a cooperative phase behavior for GUV. For a sonicated DODAB dispersion, the first upscan shows a third peak at 40.3°C, whereas for the second upscan the peaks are not well-defined, indicating a less cooperative phase behavior. Alternatively, the fluorescence quantum yield (Φ f) and the anisotropy (r) of trans, trans, trans-1-[4-(3-carboxypropyl)-phenyl]-6-[4-butylphenyl]-1,3,5-hexatriene (4H4A) and the ratio I 1/I 3 of the first to the third vibronic peaks of the pyrene emission spectrum as function of temperature are used as well to describe the phase behavior of DODAB sonicated and non-sonicated dispersions. It is in good agreement with the DSC results that the cooperativity of the thermotropic process is diminished under sonication of the DODAB dispersion, meaning that sonication changes from homogeneous to heterogeneous populations of the amphiphile aggregates. The pre- and main transitions obtained from these techniques are in fairly good accord with results from the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A phase diagram of the pseudo-ternary Aerosol OT (AOT) + n-butanol/n-heptane/water system, at a mass ratio of AOT/n-butanol = 2, is presented. Conductivity measurements showed that within the vast one-phase microemulsion region observed, the structural transition from water-in-oil to oil-in-water microemulsion occurs continuously without phase separation. This pseudo-ternary system was applied to the synthesis of carbon-supported Pt 70Fe30 nanoparticles, and it was found that nanoparticles prepared in microemulsions containing n-butanol have more Fe than those prepared in ternary microemulsions of AOT/n-heptane/water under similar conditions. It was verified that introducing n-butanol as a cosurfactant into the AOT/n-heptane/water system lead to complete reduction of the Fe ions that allowed obtaining alloyed PtFe nanoparticles with the desired composition, without the need of preparing functionalized surfactants and/or the use of inert atmosphere. © 2007 American Chemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The PEG-Ficoll polymer phase system is one that has been overlooked in the past for biotechnology applications because of the stability of its emulsions. However, new applications, such as emulsion coating of cells, are appearing that rely on this very property. Ficoll is highly polydisperse and multimodal with three distinct Ficoll peaks in gel permeation chromatography. As a result, the transition between one-phase and two-phase systems is blurred and the binodials obtained through turbidometric titration and tie-line analysis differ significantly. Moreover, since the three Ficoll peaks partition differently, tie-line analysis cannot be described by a simple model of the aqueous two-phase system. A simple modification to the model allowed for excellent fit, and this modification may prove well-suited for the many practical cases where aqueous two-phase systems fail to display parallel tie-lines as implicitly assumed in the simpler model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermosetting blends of a biodegradable poly(ethylene glycol)-type epoxy resin (PEG-ER) and poly(epsilon-caprolactone) (PCL) were prepared via an in situ curing reaction of poly(ethylene glycol) diglycidyl ether (PEGDGE) and maleic anhydride (MAH) in the presence of PCL. The miscibility, phase behavior, crystallization, and morphology of these blends were investigated. The uncured PCL/PEGDGE blends were miscible, mainly because of the entropic contribution, as the molecular weight of PEGDGE was very low. The crystallization and melting behavior of both PCL and the poly(ethylene glycol) (PEG) segment of PEGDGE were less affected in the uncured PCL/PEGDGE blends because of the very close glass-transition temperatures of PCL and PEGDGE. However, the cured PCL/PEG-ER blends were immiscible and exhibited two separate glass transitions, as revealed by differential scanning calorimetry and dynamic mechanical analysis. There existed two phases in the cured PCL/PEG-ER blends, that is, a PCL-rich phase and a PEG-ER crosslinked phase composed of an MAH-cured PEGDGE network. The crystallization of PCL was slightly enhanced in the cured blends because of the phase-separated nature; meanwhile, the PEG segment was highly restricted in the crosslinked network and was noncrystallizable in the cured blends. The phase structure and morphology of the cured PCL/PEG-ER blends were examined with scanning electron microscopy; a variety of phase morphologies were observed that depended on the blend composition. (C) 2004 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polybenzoxazine (PBA-a)/poly(epsilon-caprolactone) (PCL) blends were prepared by an in situ curing reaction of benzoxazine (BA-a) in the presence of PCL. Before curing, the benzoxazine (BA-a)/PCL blends are miscible, which was evidenced by the behaviors of single and composition-dependant glass transition temperature and equilibrium melting point depression. However, the phase separation induced by polymerization was observed after curing at elevated temperature. It was expected that after curing, the PBA-a/PCL blends would be miscible since the phenolic hydroxyls in the PBA-a molecular backbone have the potential to form inter- molecular hydrogen-bonding interactions with the carbonyls of PCL and thus would fulfil the miscibility of the blends. The resulting morphology of the blends prompted an investigation of the status of association between PBA-a and PCL under the curing conditions. Although Fourier-transform infrared spectroscopy (FT-IR) showed that there were intermolecular hydrogen-bonding interactions between PBA-a and PCL at room temperature, especially for the PCL-rich blends, the results of variable temperature FT-IR spectroscopy by the model compound indicate that the phenolic hydroxyl groups could not form efficient intermolecular hydrogen-bonding interactions at elevated temperatures, i.e., the phenolic hydroxyl groups existed mainly in the non-associated form in the system during curing. The results are valuable to understand the effect of curing temperature on the resulting morphology of the thermosetting blends. SEM micrograph of the dichloromethane-etched fracture surface of a 90:10 PBA-a PCL blend showing a heterogeneous morphology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular dynamics simulations have been used to study the phase behavior of a dipalmitoylphosphatidylcholine (DPPC)/palmitic acid (PA)/water 1:2:20 mixture in atomic detail. Starting from a random solution of DPPC and PA in water, the system adopts either a gel phase at temperatures below similar to 330 K or an inverted hexagonal phase above similar to 330 K in good agreement with experiment. It has also been possible to observe the direct transformation from a gel to an inverted hexagonal phase at elevated temperature (similar to 390 K). During this transformation, a metastable fluid lamellar intermediate is observed. Interlamellar connections or stalks form spontaneously on a nanosecond time scale and subsequently elongate, leading to the formation of an inverted hexagonal phase. This work opens the possibility of studying in detail how the formation of nonlamellar phases is affected by lipid composition and (fusion) peptides and, thus, is an important step toward understanding related biological processes, such as membrane fusion.