939 resultados para aseismic subduction zone


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis consists of two separate parts. Part I (Chapter 1) is concerned with seismotectonics of the Middle America subduction zone. In this chapter, stress distribution and Benioff zone geometry are investigated along almost 2000 km of this subduction zone, from the Rivera Fracture Zone in the north to Guatemala in the south. Particular emphasis is placed on the effects on stress distribution of two aseismic ridges, the Tehuantepec Ridge and the Orozco Fracture Zone, which subduct at seismic gaps. Stress distribution is determined by studying seismicity distribution, and by analysis of 190 focal mechanisms, both new and previously published, which are collected here. In addition, two recent large earthquakes that have occurred near the Tehuantepec Ridge and the Orozco Fracture Zone are discussed in more detail. A consistent stress release pattern is found along most of the Middle America subduction zone: thrust events at shallow depths, followed down-dip by an area of low seismic activity, followed by a zone of normal events at over 175 km from the trench and 60 km depth. The zone of low activity is interpreted as showing decoupling of the plates, and the zone of normal activity as showing the breakup of the descending plate. The portion of subducted lithosphere containing the Orozco Fracture Zone does not differ significantly, in Benioff zone geometry or in stress distribution, from adjoining segments. The Playa Azul earthquake of October 25, 1981, Ms=7.3, occurred in this area. Body and surface wave analysis of this event shows a simple source with a shallow thrust mechanism and gives Mo=1.3x1027 dyne-cm. A stress drop of about 45 bars is calculated; this is slightly higher than that of other thrust events in this subduction zone. In the Tehuantepec Ridge area, only minor differences in stress distribution are seen relative to adjoining segments. For both ridges, the only major difference from adjoining areas is the infrequency or lack of occurrence of large interplate thrust events.

Part II involves upper mantle P wave structure studies, for the Canadian shield and eastern North America. In Chapter 2, the P wave structure of the Canadian shield is determined through forward waveform modeling of the phases Pnl, P, and PP. Effects of lateral heterogeneity are kept to a minimum by using earthquakes just outside the shield as sources, with propagation paths largely within the shield. Previous mantle structure studies have used recordings of P waves in the upper mantle triplication range of 15-30°; however, the lack of large earthquakes in the shield region makes compilation of a complete P wave dataset difficult. By using the phase PP, which undergoes triplications at 30-60°, much more information becomes available. The WKBJ technique is used to calculate synthetic seismograms for PP, and these records are modeled almost as well as the P. A new velocity model, designated S25, is proposed for the Canadian shield. This model contains a thick, high-Q, high-velocity lid to 165 km and a deep low-velocity zone. These features combine to produce seismograms that are markedly different from those generated by other shield structure models. The upper mantle discontinuities in S25 are placed at 405 and 660 km, with a simple linear gradient in velocity between them. Details of the shape of the discontinuities are not well constrained. Below 405 km, this model is not very different from many proposed P wave models for both shield and tectonic regions.

Chapter 3 looks in more detail at recordings of Pnl in eastern North America. First, seismograms from four eastern North American earthquakes are analyzed, and seismic moments for the events are calculated. These earthquakes are important in that they are among the largest to have occurred in eastern North America in the last thirty years, yet in some cases were not large enough to produce many good long-period teleseismic records. A simple layer-over-a-halfspace model is used for the initial modeling, and is found to provide an excellent fit for many features of the observed waveforms. The effects on Pnl of varying lid structure are then investigated. A thick lid with a positive gradient in velocity, such as that proposed for the Canadian shield in Chapter 2, will have a pronounced effect on the waveforms, beginning at distances of 800 or 900 km. Pnl records from the same eastern North American events are recalculated for several lid structure models, to survey what kinds of variations might be seen. For several records it is possible to see likely effects of lid structure in the data. However, the dataset is too sparse to make any general observations about variations in lid structure. This type of modeling is expected to be important in the future, as the analysis is extended to more recent eastern North American events, and as broadband instruments make more high-quality regional recordings available.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The serpentinized peridotites overlying the subducted zones in the Izu-Bonin-Mariana (IBM) arc system have been interpret as the cause of the low-velocity layer identified beneath the IBM froearc, in turn few earthquakes occurred along the plate boundary. Chrysotile, which is a low temperature and highly hydrated phase of serpentine with low frictional strength, has been suggested as the low velocity material in the serpentinized peridotites, besides, brucite is inferred to be likely conducive to stable sliding. However, such idea encounters challenging in our serpentinized peridotites from the southern Mariana forearc, which absent both the above minerals. The presence of talc, which characterized by its weak, low-friction and inherently stable sliding behavior, provides new clue. Here we report the occurrence of talc in serpentinized peridotites collected from the landward trench slope of the southern Mariana forearc. We infer that talc is mainly forming as a result of the reaction of serpentine minerals with silica-saturated fluids released from the subducting slab, and talc also occurs as talc veins sometimes. Due to its unique physical properties, talc may therefore play a significant role in aseismic slip in the IBM subduction zone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evaluating the hazard potential of the Makran subduction zone requires understanding the previous records of the large earthquakes and tsunamis. We address this problem by searching for earthquake and tectonic proxies along the Makran Coast and linking those observations with the available constraints on historical seismicity and the tell-tale characteristics of sea floor morphology. The earthquake of Mw 8.1 of 1945 and the consequent tsunami that originated on the eastern part of the Makran are the only historically known hazardous events in this region. The seismic status of the western part of the subduction zone outside the rupture area of the 1945 earthquake remains an enigma. The near-shore shallow stratigraphy of the central part of Makran near Chabahar shows evidence of seismically induced liquefaction that we attribute to the distant effects of the 1945 earthquake. The coastal sites further westward around Jask are remarkable for the absence of liquefaction features, at least at the shallow level. Although a negative evidence, this possibly implies that the western part of Makran Coast region may not have been impacted by near-field large earthquakes in the recent past-a fact also supported by the analysis of historical data. On the other hand, the elevated marine terraces on the western Makran and their uplift rates are indicative of comparable degree of long-term tectonic activity, at least around Chabahar. The offshore data suggest occurrences of recently active submarine slumps on the eastern part of the Makran, reflective of shaking events, owing to the great 1945 earthquake. The ocean floor morphologic features on the western segment, on the contrary, are much subdued and the prograding delta lobes on the shelf edge also remain intact. The coast on the western Makran, in general, shows indications of progradation and uplift. The various lines of evidence thus suggest that although the western segment is potentially seismogenic, large earthquakes have not occurred there in the recent past, at least during the last 600 years. The recurrence period of earthquakes may range up to 1,000 years or more, an assessment based on the age of the youngest dated coastal ridge. The long elapsed time points to the fact that the western segment may have accumulated sufficient slip to produce a major earthquake.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The last decade has witnessed two unusually large tsunamigenic earthquakes. The devastation from the 2004 Sumatra Andaman and the 2011 Tohoku-Oki earthquakes (both of moment magnitude >= 9.0) and their ensuing tsunamis comes as a harsh reminder on the need to assess and mitigate coastal hazards due to earthquakes and tsunamis worldwide. Along any given subduction zone, megathrust tsunamigenic earthquakes occur over intervals considerably longer than their documented histories and thus, 2004-type events may appear totally `out of the blue'. In order to understand and assess the risk from tsunamis, we need to know their long-term frequency and magnitude, going beyond documented history, to recent geological records. The ability to do this depends on our knowledge of the processes that govern subduction zones, their responses to interseismic and coseismic deformation, and on our expertise to identify and relate tsunami deposits to earthquake sources. In this article, we review the current state of understanding on the recurrence of great thrust earthquakes along global subduction zones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use the Bouguer coherence (Morlet isostatic response function) technique to compute the spatial variation of effective elastic thickness (T-e) of the Andaman subduction zone. The recovered T-e map resolves regional-scale features that correlate well with known surface structures of the subducting Indian plate and the overriding Burma plate. The major structure on the India plate, the Ninetyeast Ridge (NER), exhibits a weak mechanical strength, which is consistent with the expected signature of an oceanic ridge of hotspot origin. However, a markedly low strength (0< T-e <3 km) in that region, where the NER is close to the Andaman trench (north of 10 N), receives our main attention in this study. The subduction geometry derived from the Bouguer gravity forward modeling suggests that the NER has indented beneath the Andaman arc. We infer that the bending stresses of the viscous plate, which were reinforced within the subducting oceanic plate as a result of the partial subduction of the NER buoyant load, have reduced the lithospheric strength. The correlation, T-e < T-s (seismogenic thickness) reveals that the upper crust is actively deforming beneath the frontal arc Andaman region. The occurrence of normal-fault earthquakes in the frontal arc, low Te zone, is indicative of structural heterogeneities within the subducting plate. The fact that the NER along with its buoyant root is subducting under the Andaman region is inhibiting the subduction processes, as suggested by the changes in trench line, interrupted back-arc volcanism, variation in seismicity mechanism, slow subduction, etc. The low T-e and thinned crustal structure of the Andaman back-arc basin are attributed to a thermomechanically weakened lithosphere. The present study reveals that the ongoing back-arc spreading and strike-slip motion along the West Andaman Fault coupled with the ridge subduction exerts an important control on the frequency and magnitude of seismicity in the Andaman region. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contraction, strike slip, and extension displacements along the Hikurangi margin northeast of the North Island of New Zealand coincide with large lateral gradients in material properties. We use a finite- difference code utilizing elastic and elastic-plastic rheologies to build large- scale, three-dimensional numerical models which investigate the influence of material properties on velocity partitioning within oblique subduction zones. Rheological variation in the oblique models is constrained by seismic velocity and attenuation information available for the Hikurangi margin. We compare the effect of weakly versus strongly coupled subduction interfaces on the development of extension and the partitioning of velocity components for orthogonal and oblique convergence and include the effect of ponded sediments beneath the Raukumara Peninsula. Extension and velocity partitioning occur if the subduction interface is weak, but neither develops if the subduction interface is strong. The simple mechanical model incorporating rheological variation based on seismic observations produces kinematics that closely match those published from the Hikurangi margin. These include extension within the Taupo Volcanic Zone, uplift over ponded sediments, and dextral contraction to the south.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Serpentinites release at sub-arc depths volatiles and several fluid-mobile trace elements found in arc magmas. Constraining element uptake in these rocks and defining the trace element composition of fluids released upon serpentinite dehydration can improve our understanding of mass transfer across subduction zones and to volcanic arcs. The eclogite-facies garnet metaperidotite and chlorite harzburgite bodies embedded in paragneiss of the subduction melange from Cima di Gagnone derive from serpentinized peridotite protoliths and are unique examples of ultramafic rocks that experienced subduction metasomatism and devolatilization. In these rocks, metamorphic olivine and garnet trap polyphase inclusions representing the fluid released during high-pressure breakdown of antigorite and chlorite. Combining major element mapping and laser-ablation ICP-MS bulk inclusion analysis, we characterize the mineral content of polyphase inclusions and quantify the fluid composition. Silicates, Cl-bearing phases, sulphides, carbonates, and oxides document post-entrapment mineral growth in the inclusions starting immediately after fluid entrapment. Compositional data reveal the presence of two different fluid types. The first (type A) records a fluid prominently enriched in fluid-mobile elements, with Cl, Cs, Pb, As, Sb concentrations up to 10(3) PM (primitive mantle), similar to 10(2) PM Tit Ba, while Rb, B, Sr, Li, U concentrations are of the order of 10(1) PM, and alkalis are similar to 2 PM. The second fluid (type B) has considerably lower fluid-mobile element enrichments, but its enrichment patterns are comparable to type A fluid. Our data reveal multistage fluid uptake in these peridotite bodies, including selective element enrichment during seafloor alteration, followed by fluid-rock interaction along with subduction metamorphism in the plate interface melange. Here, infiltration of sediment-equilibrated fluid produced significant enrichment of the serpentinites in As, Sb, B, Pb, an enriched trace element pattern that was then transferred to the fluid released at greater depth upon serpentine dehydration (type A fluid). The type B fluid hosted by garnet may record the composition of the chlorite breakdown fluid released at even greater depth. The Gagnone study-case demonstrates that serpentinized peridotites acquire water and fluid-mobile elements during ocean floor hydration and through exchange with sediment-equilibrated fluids in the early subduction stages. Subsequent antigorite devolatilization at subarc depths delivers aqueous fluids to the mantle wedge that can be prominently enriched in sediment-derived components, potentially triggering arc magmatism without the need of concomitant dehydration/melting of metasediments or altered oceanic crust.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to study late Holocene changes in sediment supply into the northern Arabian Sea, a 5.3 m long gravity core was investigated by high-resolution geochemical and mineralogical techniques. The sediment core was recovered at a water depth of 956 m from the continental slope off Pakistan and covers a time span of 5 kyr. During the late Holocene source areas delivering material to the sampling site did, however, not change and were active throughout the year.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New heat-flow values were obtained in the central Peru Trench area during site surveys and drilling of Ocean Drilling Program (ODP) Leg 112 by measuring temperatures with ordinary surface heat-flow probes and in the drill holes and by estimating from bottom-simulating reflectors resulting from gas hydrates. The values determined by these methods are consistent with each other within the limits of error. When combined with existing data, heat-flow distribution from the trench to the coast was delineated. Heat flow is lower than 40 mW/m**2 at the bottom of the trench and 40 to 50 mW/m**2 on the landward slope. The low heat flow at the trench bottom can be explained partly by a high sedimentation rate. Heat flow is variable about where the Mendana Fracture Zone meets the trench. This low heat flow might result from hydrothermal circulation in the fracture zone, which some scientists believe is a new propagating rift. On the landward slope, no significant difference in heat flow is recognized between the northern side and the southern side of the fracture zone, in spite of differences in the age of the subducting plate and the tectonic history. Heat flow on the landward slope may be slightly higher than that in most other subduction zones.